Skip to main content
Log in

On the northward shift of the West African monsoon

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The regional climate model (MAR) is used to perform a simulation of the year 1992 over West Africa. It is shown that MAR is able to simulate the main features of the rainy regime over West Africa and especially the discontinuous seasonal progression of the West African Monsoon along the year. One particular feature that is reasonably well reproduced is the abrupt shift of the rain band from 5° to 10°N at the end of June (also called “monsoon jump”). This study suggests that such a phenomenon is associated with the shift of the Saharan heat low between two favourite positions: one being over the Sahelian area (10–15°N) and the other over the Saharan area (20–25°N). These two favourite locations of the heat low are linked to the spatial distribution of surface albedo over West Africa that drives the spatio-temporal location of the surface temperature maxima. A detailed analysis of this “monsoon jump” is performed and the causes of the strong decrease in precipitation that precedes the northward shift of the rain band are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Ati OF, Stinger CJ, Oladipo EO (2002) A comparison of methods to determine the onset of the growing season in the northern Nigeria. Int J Climatol 22:731–742

    Article  Google Scholar 

  • Bechtold P, Bazile E, Guichard F, Mascart P, Richard E (2001) A mass flux convection scheme for regional and global models. Q J R Meteorol Soc 127:869–886

    Article  Google Scholar 

  • Brasseur O (2001) Development and application of a physical approach to estimating wind gusts. Mon Weather Rev 129:5–25

    Article  Google Scholar 

  • Brasseur O, Tricot C, Ntezimana V, Gallée H, Schayes G (1998) Importance of the convective adjustment scheme in the simulation of the diurnal cycle of convective activity in Africa. In: Demarée GJ Alexandre, De Dapper M (eds) Proceedings of the international conference. Tropical climatology, meteorology and hydrology, pp 299–312

  • Cassano JJ, Box JE, Bromwich DH, Li L, Steffen K (2001) Evaluation of polar MM5 simulations of Greenland’s atmospheric circulation. J Geophys Res 106:867–890

    Article  Google Scholar 

  • De Ridder K (1997) Land surface processes and the potential for convective precipitation. J Geophys Res 102:30085–30090

    Article  Google Scholar 

  • De Ridder K, Gallée H (1998) Land surface-induced regional climate change in Southern Israel. J Appl Meteorol 37:1470–1485

    Article  Google Scholar 

  • Eltahir EAB, Gong C (1996) Dynamics of wet and dry years in West Africa. J Climate 9:1030–1042

    Article  Google Scholar 

  • Emanuel KA (1995) On thermally direct circulations in moist atmospheres. J Atmos Sci 52:1529–1534

    Article  Google Scholar 

  • Fletcher NH (1962) Physics of rain clouds. Cambridge University Press, Cambridge

    Google Scholar 

  • Fontaine B, Philippon N, Camberlin P (1999) An improvement of June–September rainfall forecasting in the Sahel based upon region April–May moist static energy content (1968–1997). Geophys Res Lett 26:2041–2044

    Article  Google Scholar 

  • Fouquart Y, Bonnel B (1980) Computation of the solar heating of the Earth’s atmosphere: a new parameterization. Beitr Phys Atmos 53:35–62

    Google Scholar 

  • Gallée H (1995) Simulation of the mesocyclonic activity in the Ross Sea. Antarctica Mon Weather Rev 123:2051–2069

    Article  Google Scholar 

  • Gallée H, Schayes G (1994) Development of a three-dimensional meso gamma primitive equations model. Katabatic winds simulation in the area of Terra Nova Bay. Antarctica Mon Weather Rev 122:671–685

    Article  Google Scholar 

  • Gallée H, Moufouma-Okia W, Brasseur O, Dupays I, Marbaix P, Messager C, Ramel R, Lebel T (2004) A high resolution simulation of a West African rainy season using a regional climate model. J Geophys Res 109, DOI 10.1029/2003JD004020

  • Gu G, Adler RF (2004) Seasonal evolution and variability associated with the West African Monsoon system. J Climate 17:3364–3377

    Article  Google Scholar 

  • Huffman GJ et al (1997) The Global Precipitation Climatology Project (GPCP) combined precipitation data set. Bull Am Meteor Soc 78:5–20

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Roy Jenne, Dennis Joseph (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulation. Meteorol Monogr, vol 10, No. 32, AMS

  • Le Barbé L, Lebel T, Tapsoba D (2002) Rainfall variability in West Africa during the years 1950–90. J Climate 15:187–202

    Article  Google Scholar 

  • Lebel T, Diedhiou A, Laurent H (2003) Seasonal cycle and interannual variability of the Sahelian rainfall at hydrological scales. J Geophys Res, 108(D8), DOI 10.1029/2001JD001580

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected global precipitation. Int J Climatol 10:11–127

    Article  Google Scholar 

  • Levkov L, Rockel B, Kapitza H, Raschke E (1992) 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Beitr Phys Atmos 65:35–57

    Google Scholar 

  • Lin YL, Farley RD, Orville HD (1983) Bulk parametrization of the snow field in a cloud model. J Appl Meteorol 22:1065–1092

    Article  Google Scholar 

  • Marbaix P, Gallée H, Brasseur O, Van Ypersele JP (2003) Lateral boundary conditions in regional climate models: a detailed study of the relaxation procedure. Mon Weather Rev 131:461–479

    Article  Google Scholar 

  • Matthews AJ (2004) Intraseasonal variability over Tropical Africa during Northern Summer. J Climate 17:2427–2440

    Article  Google Scholar 

  • Messager C, Gallée H, Brasseur O (2004) Precipitation sensitivity to regional SST in a climate simulation during the West African monsoon for two dry years. Climate Dyn 22:249–266

    Article  Google Scholar 

  • Meyers MP, DeMott PJ, Cotton WR (1992) New primary ice-nucleation parameterizations in an explicit cloud model. J Appl Meteorol 31:708–721

    Article  Google Scholar 

  • Morcrette JJ (1984) Sur la paramétrisation du rayonnement dans les modèles de la circulation générale atmosphérique. Ph.D. thesis, univ. des Sci. et Tech. de Lille, Lille, France. Thèse de Doctorat d’Etat, 373 pp

  • Reynolds RW, Smith MT (1995) A high-resolution global sea surface temperature climatology. J Climate 8:1571–1583

    Article  Google Scholar 

  • Sultan B, Janicot S (2000) Abrupt shift of the ICTZ over West Africa and intra-seasonal variability. Geophys Res Lett 27:3353–3356

    Article  Google Scholar 

  • Sultan B, Janicot S (2003) The West African Monsoon dynamics. Part II: the preonset and onset of the summer monsoon. J Climate 16:3407–3427

    Article  Google Scholar 

  • Thorncroft CD, Blackburn M (1997) On the maintenance of the African Easterly Jet. Q J R Meteorol Soc 123:763–786

    Google Scholar 

  • Willmott CJ, Robenson SM (1995) Climatologically aided interpolation (CAI) of terrestrial air temperature. Int J Climatol 15:221–229

    Article  Google Scholar 

  • Zheng X, Eltahir EAB (1998) The role of vegetation in the dynamics of West African monsoons. J Climate 11:2078–2096

    Google Scholar 

Download references

Acknowledgments

All major computations were realised with IDRIS computing resources. The authors thank the NCEP, ECMWF, UDEL institutions for their datasets. The GPCP merged analysis of pentad precipitation is created at the CPC of NOAA. Thanks to Bernard Fontaine and Frederic Hourdin for useful discussions and comments. We also thank the two anonymous reviewers for their help in improving this paper. This research was in part supported by the AMMA international program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Messager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramel, R., Gallée, H. & Messager, C. On the northward shift of the West African monsoon. Clim Dyn 26, 429–440 (2006). https://doi.org/10.1007/s00382-005-0093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-005-0093-5

Keywords

Navigation