Skip to main content

Advertisement

Log in

An analysis of warm pool and cold tongue El Niños: air–sea coupling processes, global influences, and recent trends

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The differences in tropical air–sea interactions and global climate connection as well as the hindcast skills for the warm pool (WP) and cold tongue (CT) El Niños are investigated based on observed, (re)analyzed, and model hindcast data. The robustness of observed global climate connection is established from the model simulations. Lastly, variations of atmosphere and ocean conditions in the recent decades, and their possible connection with the frequency increase of the WP El Niño are discussed. Consistent with previous results, our individual case study and composite results suggest that stronger (weaker) and more eastward extended (westward confined) westerly wind along the equatorial Pacific in early months of a year is associated with active (suppressed) air–sea interaction over the cold tongue/the Intertropical Convergence Zone complex, as well as more (less) intensive oceanic thermocline feedback, favoring the CT (WP) El Niño development. The preceding westerly wind signal and air-sea interaction differences may be responsible for the predication skill difference with higher (lower) overall hindcast skill for the CT (WP) El Niño in the Climate Forecast System of National Centers for Environmental Prediction. Our model experiments show that, in addition to the tropics, the eastern Pacific, North America and North Atlantic are the major regions having robust climate differences between the CT and WP El Niños. Nevertheless, the climate contrasts seem not robust over the Eurasian continent. Also, the frequency increase of the WP El Niño in the recent decades may not be directly connected with the linear trend of the tropical climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Bacmeister JT, Pegion PJ, Schubert SD, Suarez MJ (2000) An atlas of seasonal means simulated by the NSIPP 1 atmospheric GCM. 17, NASA Goddard Space Flight Center Tech. Memo. 104606, p 194

  • Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. In: Eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, AMS 84th annual meeting, Seattle, Washington, 11–15

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Choi J, An S-I, Kug J-S,Yeh, S-W (2011) The role of mean state on changes in El Niño’s flavor. Clim Dyn. doi:10.1007/s00382-010-0912-1 (published online)

  • Giese BS, Harrison DE (1990) Aspects of the Kelvin wave response to episodic wind forcing. J Geophys Res 95:7289–7312

    Article  Google Scholar 

  • Harrison DE, Chiodi AM (2009) Pre- and post 97/98 westerly wind events and equatorial Pacific cold tongue warming. J Clim 22:568–581. doi:10.1175/2008JCLI2270

    Article  Google Scholar 

  • Harrison DE, Vecchi G (1997) Surface westerly wind events in the tropical Pacific 1986–1995. J Clim 10:3131–3156

    Article  Google Scholar 

  • Hoerling MP, Kumar A (2002) Atmospheric response patterns associated with tropical forcing. J Clim 15:2184–2203

    Article  Google Scholar 

  • Huang B, Schneider EK (1995) The response of an ocean general circulation model to surface wind stress produced by an atmospheric general circulation model. Mon Weather Rev 123:3059–3085

    Article  Google Scholar 

  • Huang B, Xue Y, Zhang D, Kumar A, McPhaden MJ (2010) The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J Clim 23:4901–4925

    Article  Google Scholar 

  • Janowiak JE, Xie P (1999) CAMS-OPI: a global satellite-rain gauge merged product for real-time precipitation monitoring applications. J Clim 12:3335–3342

    Article  Google Scholar 

  • Jin F–F, Hoskins BJ (1995) The direct response to tropical heating in a baroclinic atmosphere. J Atmos Sci 52:307–319

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kanamitsu M et al (2002a) NCEP-DOE AMIP-II Reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kanamitsu M et al (2002b) NCEP dynamical seasonal forecast system 2000. Bull Am Meteorol Soc 83:1019–1037

    Article  Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Kindle JC, Phoebus PA (1995) The ocean response to operational westerly wind bursts during the 1991–1992 El Niño. J Geophys Res 100:4893–4920

    Article  Google Scholar 

  • Kug J-S, Jin F–F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515. doi:10.1175/2008JCLI2624.1

    Article  Google Scholar 

  • Kug J-S, Choi J, An S-I, Jin F–F, Wittenberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239

    Article  Google Scholar 

  • Kumar A (2009) Finite samples and uncertainty estimates for skill measures for seasonal predictions. Mon Weather Rev 137:2622–2631

    Article  Google Scholar 

  • Kumar A, Hu Z–Z (2011) Uncertainty in the ocean-atmosphere feedbacks associated with ENSO in the reanalysis products. Clim Dyn. doi:10.1007/s00382-011-1104-3 (published online)

  • Kumar A, Zhang Q, Peng P, Jha B (2005) SST-forced atmospheric variability in an atmospheric general circulation model. J Clim 18:3953–3967

    Article  Google Scholar 

  • Kumar A, Jha B, L’Heureux M (2010) Are tropical SST trends changing the global teleconnection during La Niña? Geophys Res Lett 37:L12702. doi:10.1029/2010GL043394

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L13705. doi:10.1029/2005GL022738

    Article  Google Scholar 

  • Latif M, Kleeman R, Eckert C (1997) Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990 s. J Clim 10:2221–2239

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007

    Article  Google Scholar 

  • Levitus S et al (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608. doi:10.1029/2008GL037155

    Article  Google Scholar 

  • Luther DS, Harrison DE (1984) Observing long-period fluctuations of surface winds in the tropical Pacific: initial results from island data. Mon Weather Rev 112:285–302

    Article  Google Scholar 

  • Luther DS, Harrison DE, Knox RA (1983) Zonal winds in the central equatorial Pacific and El Nino. Science 222:327–330

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Roeckner E et al (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791

    Article  Google Scholar 

  • Ropelewski CF, Janowiak JE, Halpert MS (1985) The analysis and display of real time surface climate data. Mon Weather Rev 113:1101–1106

    Article  Google Scholar 

  • Saha S et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Trenberth KE, Smith L (2006) The vertical structure of temperature in the tropics: different flavors of El Niño. J Clim 19:4956–4973

    Article  Google Scholar 

  • Wang W, Chen M, Kumar A (2010) An assessment of the CFS real-time seasonal forecasts. Weather Forecast 25:950–969. doi:10.1175/2010WAF2222345.1

    Article  Google Scholar 

  • Wang W, Chen M, Kumar A, Xue Y (2011) How important is intraseasonal surface wind variability to real-time ENSO prediction? Geophys Res Lett 38:L13705. doi:10.1029/2011GL047684

  • Weare BC, Navato AR, Newell RE (1976) Empirical orthogonal analysis of Pacific sea surface temperatures. J Phys Ocean 6:671–678

    Article  Google Scholar 

  • Weng H, Ashok K, Behera SK, Rao SA, Yamagada T (2007) Impacts of recent El Niño Modoki on droughts/floods in the Pacific rim during boreal summer. Clim Dyn 29:113–129. doi:10.1007/s00382-007-0234-0

    Article  Google Scholar 

  • Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674. doi:10.1007/s00382-008-0394-6

    Article  Google Scholar 

  • Yeh S et al (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Yu J-Y, Kim ST (2010a) Three evolution patterns of central-Pacific El Niño. Geophys Res Lett 37:L08706. doi:10.1029/2010GL042810

    Article  Google Scholar 

  • Yu J-Y, Kim ST (2010b) Identification of central-Pacific and eastern-Pacific types of ENSO in CMIP3 models. Geophys Res Lett 37:L15705. doi:10.1029/2010GL044082

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the comments, suggestions, and helps from Michelle L’Heureux, Kingtse Mo, Peitao Peng, and Mingyue Chen, as well as two anonymous reviewers, which largely improved the manuscript. Bohua Huang is supported by the NOAA CVP Program (NA07OAR4310310) as well as the COLA omnibus program from NSF, NOAA, and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Zhen Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, ZZ., Kumar, A., Jha, B. et al. An analysis of warm pool and cold tongue El Niños: air–sea coupling processes, global influences, and recent trends. Clim Dyn 38, 2017–2035 (2012). https://doi.org/10.1007/s00382-011-1224-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1224-9

Keywords

Navigation