Skip to main content
Log in

A metric for surface heat flux effect on horizontal sea surface temperature gradients

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Understanding what controls horizontal variations in sea surface temperatures (SSTs) is one of the key science questions in climate research. Although various oceanic effects contribute to reinforcement/relaxation of horizontal variations in SSTs, the role of surface heat fluxes is surprisingly complex and can lead to significant biases in coupled models if improperly represented. In particular, the contribution of surface heat fluxes to surface frontogenesis/frontolysis depends not just on their gradients, but also on the distribution of mixed layer depth, which controls the effective heat capacity of the upper ocean. In this study, a new metric, referred to as the surface flux frontogenesis metric, is proposed that quantifies the relative importance of horizontal variations in surface heat fluxes and mixed layer depth. Global maps of this metric reveal that the role of surface heat fluxes in determining the horizontal SST gradient is highly variable geographically and by season. Furthermore, the metric can help explain characteristics of SST fronts in the northwestern Pacific, the Southern Ocean, the eastern equatorial Pacific, and the west coast of North America. Implications of this metric in coupled models will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • An SI (2008) Interannual variations of the tropical ocean instability wave and ENSO. J Clim 21:3680–3686

    Article  Google Scholar 

  • Beal L et al (2011) On the role of the Agulhas system in ocean circulation and climate. Nature 472:429–436

    Article  Google Scholar 

  • Bryan FO, Tomas R, Dennis JM, Chelton DB, Loeb NG, McClean JL (2010) Frontal scale air–sea interaction in high-resolution coupled climate models. J Clim 23:6277–6291

    Article  Google Scholar 

  • Carr ME (2002) Estimation of potential productivity in eastern boundary currents using remote sensing. Deep-Sea Res II 49:59–80

    Article  Google Scholar 

  • Chavez FP, Messié M (2009) A comparison of eastern boundary upwelling ecosystems. Prog Oceanogr 83:80–96

    Article  Google Scholar 

  • Chiang JCH, Kushnir Y, Giannini A (2002) Deconstructing Atlantic Intertropical Convergence Zone variability: Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J Geophys Res 107:4004

    Article  Google Scholar 

  • Cronin M, Bond NA, Farrar JT, Ichikawa H, Jayne SR, Kawai Y, Konda M, Qiu B, Rainville L, Tomita H (2013) Formation and erosion of the seasonal thermocline in the Kuroshio extension recirculation gyre. Deep-Sea Res II 85:62–74

    Article  Google Scholar 

  • Currie KI, Hunter KA (1998) Surface water carbon dioxide in the waters associated with the subtropical convergence, east of New Zealand. Deep-Sea Res I 45:1765–1777

    Article  Google Scholar 

  • de Szoeke SP, Xie SP, Miyama T, Richards KJ, Small RJO (2007) What maintains the SST front north of the Eastern pacific equatorial cold tongue? J Clim 20:2500–2514

    Article  Google Scholar 

  • Dong S, Gille ST, Sprintall J (2007) An assessment of the Southern Ocean mixed layer heat budget. J Clim 20:4425–4442

    Article  Google Scholar 

  • Dong S, Sprintall J, Gille ST, Talley L (2008) Southern Ocean mixed-layer depth from Argo float profiles. J Geophys Res Oceans 113, doi:10.1029/2006JC004051

  • García-Reyes M, Largier JL (2012) Seasonality of coastal upwelling off central and northern California: new insights, including temporal and spatial variability. J Geophys Res Oceans 117:C03028

    Article  Google Scholar 

  • Gastineau G, Li L, Le Treut H (2009) The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J Clim 22:3993–4013

    Article  Google Scholar 

  • Gordon AL (1989) Brazil-Malvinas confluence—1984. Deep-Sea Res I 36:359–384

    Article  Google Scholar 

  • Graham RM, de Boer AM, Heywood KJ, Chapman MR, Stevens DP (2012) Southern ocean fronts: controlled by wind or topography? J Geophys Res 117:C08018

    Google Scholar 

  • Haarsma RJ et al (2016) High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geosci Model Dev 9:4185–4208

    Article  Google Scholar 

  • Hand R, Keenlyside N, Nmrani NE, Latif M (2014) Simulated response to inter-annual SST variations in the Gulf Stream region. Clim Dyn 42:715–731

    Article  Google Scholar 

  • Hartmann DL (2016) Global physical climatology. Elsevier, Oxford, p 485

    Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Holte J, Talley L (2009) A new algorithm for finding mixed layer depths with applications to Argo data and Subantarctic Mode Water formation. J Atmos Oceanic Tech 26:1920–1939

    Article  Google Scholar 

  • Horel JD (1982) On the annual cycle of the tropical Pacific atmosphere and ocean. Mon Weather Rev 110:1863–1878

    Article  Google Scholar 

  • Huyer A (1983) Coastal upwelling in the California current system. Prog Oceanogr 12:259–284

    Article  Google Scholar 

  • Izumo T, de Boyer Montégut C, Luo JJ, Behera SK, Masson S, Yamagata T (2008) The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21:5603–5623

    Article  Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Oxford, p 231

    Google Scholar 

  • Jullion L, Heywood KJ, Naveira Garabato AC, Stevens DP (2010) Circulation and water mass modification in the Brazil–Malvinas Confluence. J Phys Oceanogr 40:845–864

    Article  Google Scholar 

  • Kataoka T, Tozuka T, Behera SK, Yamagata T (2014) On the Ningaloo Niño/Niña. Clim Dyn 43:1463–1482

    Article  Google Scholar 

  • Kazmin AS (2017) Variability of the climatic oceanic frontal zones and its connection with the large-scale atmospheric forcing. Prog Oceanogr 154:38–48

    Article  Google Scholar 

  • Kelly KA, Small RJ, Samelson RM, Qiu B, Joyce TM, Kwon YO, Cronin MF (2010) Western boundary currents and frontal air–sea interaction: gulf stream and Kuroshio extension. J Clim 23:5644–5667

    Article  Google Scholar 

  • Kida S et al (2015) Oceanic fronts and jets around Japan—a review. J Oceanogr 71:469–497

    Article  Google Scholar 

  • Konda M, Ichikawa H, Tomita H, Cronin MF (2010) Surface heat flux variations across the Kuroshio extension as observed by surface flux buoys. J Clim 23:5206–5221

    Article  Google Scholar 

  • Large WG, Danabasoglu G (2006) Attribution and impacts of upper-ocean biases in CCSM3. J Clim 19:2325–2345

    Article  Google Scholar 

  • Lee E, Noh Y, Qiu B, Yeh SW (2015) Seasonal variation of the upper ocean responding to surface heating in the North Pacific. J Geophys Res 120:5631–5647

    Article  Google Scholar 

  • Legeckis R (1977) Long waves in the eastern equatorial Pacific Ocean: a view from a geostationary satellite. Science 197:1177–1181

    Article  Google Scholar 

  • Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436

    Article  Google Scholar 

  • Lutjeharms JRE, Ansorge IJ (2001) The Agulhas return current. J Mar Sys 30:115–138

    Article  Google Scholar 

  • Ma X et al (2016) Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature 535:533–537

    Article  Google Scholar 

  • McGillicuddy D, Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickey TD, McNeil J, Michaels AF, Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso sea. Nature 394:263–266

    Article  Google Scholar 

  • Miyasaka T, Nakamura H (2005) Structure and formation of the Northern Hemisphere summertime subtropical high. J Clim 18:5046–5065

    Article  Google Scholar 

  • Moisan JR, Niiler PP (1998) The seasonal heat budget of the North Pacific: net heat flux and heat storage rates (1950–1990). J Phys Oceanogr 28:401–421

    Article  Google Scholar 

  • Moore JK, Abbott MR (2000) Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. J Geophys Res 105:28709–28722

    Article  Google Scholar 

  • Nakamura H, Sampe T, Tanimoto Y, Shimpo A (2004) Observed associations among storm tracks, Jet Streams and midlatitude oceanic fronts. In: Wang C, Xie SP, Carton JA (eds) Earth’s climate: the ocean–atmosphere interaction, geophysical monograph, vol 147. AGU, Washington D. C., pp 329–345

    Google Scholar 

  • Oettli P, Morioka Y, Yamagata T (2016) A regional climate mode discovered in the North Atlantic: Dakar Niño/Niña. Sci Rep 6:18782

    Article  Google Scholar 

  • Ohishi S, Tozuka T, Komori N (2016) Frontolysis by surface heat flux in the Agulhas Return Current region with a focus on mixed layer processes: observation and a high‑resolution CGCM. Clim Dyn 47:3993–4007

    Article  Google Scholar 

  • Ohishi S, Tozuka T, Cronin MF (2017) Frontogenesis in the Agulhas return current region simulated by a high-resolution CGCM. J Phys Oceanogr. doi:10.1175/JPO-D-17-0038.1

    Google Scholar 

  • Orsi AH, Whitworse T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic circumpolar current. Deep-Sea Res I 42:641–673

    Article  Google Scholar 

  • Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952–956

    Article  Google Scholar 

  • Pickett MH, Paduan JD (2003) Ekman transport and pumping in the California current based on the U.S. Navy’s high-resolution atmospheric model (COAMPS). J Geophys Res 108:3327

    Article  Google Scholar 

  • Ruddick BR (1983) A practical indicator of the stability of the water column to double-diffusive activity. Deep-Sea Res 30:1105–1107

    Article  Google Scholar 

  • Sampe T, Nakamura H, Goto A, Ohfuchi W (2010) Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J Clim 23:1793–1814

    Article  Google Scholar 

  • Schmidtko S, Johnson GC, Lyman JM (2013) MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. J Geophys Res Oceans 118:1658–1672

    Article  Google Scholar 

  • Small RJ, deSzoeke SP, Xie SP, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45:274–319

    Article  Google Scholar 

  • Sokolov S, Rintoul SR (2009) Circumpolar structure and distribution of the Antarctic circumpolar current fronts: 1. Mean circumpolar paths. J Geophys Res 114:C11018. doi:10.1029/2008JC005108

    Article  Google Scholar 

  • Taguchi B, Nakamura H, Nonaka M, Komori N, Kuwano-Yoshida A, Takaya K, Goto A (2012) Seasonal evolutions of atmospheric response to decadal SST anomalies in the north pacific subarctic frontal zone: observations and a coupled model simulation. J Clim 25:111–139

    Article  Google Scholar 

  • Tomita H, Kubota M, Cronin MF, Iwasaki S, Konda M, Ichikawa H (2010) An assessment of surface heat fluxes from J-OFURO2 at the KEO and JKEO sites. J Geophys Res-Oceans 115:C03018

    Google Scholar 

  • Tozuka T, Cronin MF (2014) Role of mixed layer depth in surface frontogenesis: the Agulhas return current front. Geophys Res Lett 41:2447–2453

    Article  Google Scholar 

  • Tozuka T, Yamagata T (2003) Annual ENSO. J Phys Oceanogr 33:1564–1578

    Article  Google Scholar 

  • Tozuka T, Nagura M, Yamagata T (2014) Influence of the reflected Rossby waves on the western Arabian Sea upwelling region. J Phys Oceanogr 44:1424–1438

    Article  Google Scholar 

  • Tozuka T, Cronin MF, Tomita H (2017) Surface frontogenesis by surface heat fluxes in the upstream Kuroshio Extension. region Sci Rep 7:10258

    Article  Google Scholar 

  • Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, Cambridge, p 367

    Book  Google Scholar 

  • Vialard J, Menkes C, Boulanger JP, Delecluse P, Guilyardi E (2001) A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J Phys Oceanogr 31:1649–1675

    Article  Google Scholar 

  • Wu L et al (2012) Enhanced warming over the global subtropical western boundary currents. Nature Clim Change 2:161–166

    Article  Google Scholar 

  • Yasuda I, Tozuka T, Noto M, Kouketsu S (2000) Heat balance and regime shifts of the mixed layer in the Kuroshio Extension. Prog Oceanogr 47:257–278

    Article  Google Scholar 

  • Yoshida K (1955) Coastal upwelling off the California coast. Rec Oceanogr Works Jpn 2:8–20

    Google Scholar 

  • You Y (2002) A global ocean climatological atlas of the Turner angle: Implications for double-diffusion and water-mass structure. Deep-Sea Res 49:2075–2093

    Article  Google Scholar 

  • Yuan C, Yamagata T (2014) California Niño/Niña. Sci Rep 4:4801

    Article  Google Scholar 

  • Zolina O, Gulev SK (2003) Synoptic variability of ocean–atmosphere turbulent fluxes associated with atmospheric cyclones. J Clim 16:2717–2734

    Article  Google Scholar 

Download references

Acknowledgements

This study greatly benefited from insightful comments by Frank Bryan and an anonymous reviewer. The MIMOC data is available from http://www.pmel.noaa.gov/mimoc/, and the J-OFURO2 data is available from http://dtsv.scc.u-tokai.ac.jp/j-ofuro/. TT was supported by Grant-in-Aid for Scientific Research on Innovative Areas (MEXT KAKENHI Grant number JP16H01589) and the Japan Society for Promotion of Science through Grant-in-Aid for Scientific Research (B) JP16H04047. PMEL contribution 4649.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoki Tozuka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tozuka, T., Ohishi, S. & Cronin, M.F. A metric for surface heat flux effect on horizontal sea surface temperature gradients. Clim Dyn 51, 547–561 (2018). https://doi.org/10.1007/s00382-017-3940-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3940-2

Keywords

Navigation