Skip to main content

Advertisement

Log in

Impact of a very low-energy diet on the fecal microbiota of obese individuals

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Study how the dietary intake affects the fecal microbiota of a group of obese individuals after a 6-week very low-energy diet (VLED) and thereafter during a follow-up period of 5, 8, and 12 months. Additionally, we compared two different methods, fluorescent in situ hybridization (FISH) and real-time PCR (qPCR), for the quantification of fecal samples.

Methods

Sixteen subjects participated in a 12-month dietary intervention which consisted of a VLED high in protein and low in carbohydrates followed by a personalized diet plan, combined with exercise and lifestyle counseling. Fecal samples were analyzed using qPCR, FISH, and denaturing gradient gel electrophoresis.

Results

The VLED affected the fecal microbiota, in particular bifidobacteria that decreased approximately two logs compared with the baseline numbers. The change in numbers of the bacterial groups studied followed the dietary intake and not the weight variations during the 12-month intervention. Methanogens were detected in 56 % of the participants at every sampling point, regardless of the dietary intake. Moreover, although absolute numbers of comparable bacterial groups were similar between FISH and qPCR measurements, relative proportions were higher according to FISH results.

Conclusions

Changes in the fecal microbial numbers of obese individuals were primarily affected by the dietary intake rather than weight changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Frary CD, Johnson RK (2004) Energy. In: Mahan KL, Sylvia E-S (eds) Krause’s food nutrition & diet therapy. Saunders, Philadelphia, pp 21–38

    Google Scholar 

  2. Prentice A, Jebb S (2004) Energy intake/physical activity interactions in the homeostasis of body weight regulation. Nutr Rev 62(7 Pt 2):S98–S104

    Article  Google Scholar 

  3. Santacruz A, Marcos A, Warnberg J, Marti A, Martin-Matillas M, Campoy C, Moreno LA, Veiga O, Redondo-Figuero C, Garagorri JM, Azcona C, Delgado M, Garcia-Fuentes M, Collado MC, Sanz Y, Group ES (2009) Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity 17(10):1906–1915. doi:10.1038/oby.2009.112

    Article  Google Scholar 

  4. Nadal I, Santacruz A, Marcos A, Warnberg J, Garagorri M, Moreno LA, Martin-Matillas M, Campoy C, Marti A, Moleres A, Delgado M, Veiga OL, Garcia-Fuentes M, Redondo CG, Sanz Y (2009) Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes 33(7):758–767. doi:10.1038/ijo.2008.260

    Article  CAS  Google Scholar 

  5. Mustajoki P, Pekkarinen T (2001) Very low energy diets in the treatment of obesity. Obes Rev 2(1):61–72

    Article  CAS  Google Scholar 

  6. Pietiläinen KH, Kaye S, Karmi A, Suojanen L, Rissanen A, Virtanen KA (2012) Agreement of bioelectrical impedance with dual-energy X-ray absorptiometry and MRI to estimate changes in body fat, skeletal muscle and visceral fat during a 12-month weight loss intervention. Br J Nutr pp 1910–1916. doi:10.1017/S0007114512003698

  7. Bogl LH, Maranghi M, Rissanen A, Kaprio J, Taskinen MR, Pietilainen KH (2011) Dietary omega-3 polyunsaturated fatty acid intake is related to a protective high-density lipoprotein subspecies profile independent of genetic effects: a monozygotic twin pair study. Atherosclerosis 219(2):880–886. doi:10.1016/j.atherosclerosis.2011.09.010

    Article  CAS  Google Scholar 

  8. National Institute for Health and Welfare, Nutrition Unit. Fineli. Finnish food composition database. Release 16. Helsinki 2013. http://www.fineli.fi

  9. Maukonen J, Matto J, Satokari R, Soderlund H, Mattila-Sandholm T, Saarela M (2006) PCR DGGE and RT-PCR DGGE show diversity and short-term temporal stability in the Clostridium coccoidesEubacterium rectale group in the human intestinal microbiota. FEMS Microbiol Ecol 58(3):517–528. doi:10.1111/j.1574-6941.2006.00179.x

    Article  CAS  Google Scholar 

  10. Simões CD, Maukonen J, Kaprio J, Rissanen A, Pietilainen KH, Saarela M (2013) Habitual dietary intake is associated with stool microbiota composition in monozygotic twins. J Nutr 23:417–423. doi:10.3945/jn.112.166322

    Article  Google Scholar 

  11. Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71(7):3692–3700. doi:10.1128/aem.71.7.3692-3700.2005

    Article  CAS  Google Scholar 

  12. Maukonen J, Simões C, Saarela M (2012) The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiol Ecol 79(3):697–708. doi:10.1111/j.1574-6941.2011.01257.x

    Article  CAS  Google Scholar 

  13. Maukonen J, Matto J, Suihko ML, Saarela M (2008) Intra-individual diversity and similarity of salivary and faecal microbiota. J Med Microbiol 57(Pt 12):1560–1568. doi:10.1099/jmm.0.47352-0

    Article  CAS  Google Scholar 

  14. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  15. Pinheiro J, Bates D, DebRoy S, Sarkar D and the R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1–113

  16. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363. doi:10.1002/bimj.200810425

    Article  Google Scholar 

  17. Macfarlane GT, Cummings JH, Allison C (1986) Protein degradation by human intestinal bacteria. J Gen Microbiol 132(6):1647–1656

    CAS  Google Scholar 

  18. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, Mariat D, Corthier G, Dore J, Henegar C, Rizkalla S, Clement K (2010) Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59(12):3049–3057. doi:10.2337/db10-0253

    Article  CAS  Google Scholar 

  19. Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, Flint HJ (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes 32(11):1720–1724. doi:10.1038/ijo.2008.155

    Article  CAS  Google Scholar 

  20. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, Krakoff J (2011) Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94(1):58–65. doi:10.3945/ajcn.110.010132

    Article  CAS  Google Scholar 

  21. Gibson GR, Macfarlane GT, Cummings JH (1988) Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J Appl Bacteriol 65(2):103–111

    Article  CAS  Google Scholar 

  22. Armougom F, Henry M, Vialettes B, Raccah D, Raoult D (2009) Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS ONE 4(9):e7125. doi:10.1371/journal.pone.0007125

    Article  Google Scholar 

  23. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031. doi:10.1038/nature05414

    Article  Google Scholar 

  24. Hakalehto E, Vilpponen-Salmela T, Kinnunen K, von Wright A (2011) Lactic Acid bacteria enriched from human gastric biopsies. ISRN Gastroenterol 109183(10):20. doi:10.5402/2011/109183

    Google Scholar 

  25. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44(4):812–826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ms. Jennifer Martin and Ms. Marja-Liisa Jalovaara are greatly acknowledged for the excellent technical assistance. The authors acknowledge the support of the Portuguese Foundation for Science and Technology (FCT; Grant SFRH/BD/40920/2007) and the European Science Foundation (ESF), in the framework of the Research Networking Programme, The European Network for Gastrointestinal Health Research (ENGIHR), Helsinki and Turku University Hospital Research Funds, Finnish Diabetes Research, Novo Nordisk, Biomedicum Helsinki, Jalmari and Rauha Ahokas Foundation, and the Finnish Foundation for Cardiovascular Research.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Simões.

Additional information

K. H. Pietiläinen and M. Saarela have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simões, C.D., Maukonen, J., Scott, K.P. et al. Impact of a very low-energy diet on the fecal microbiota of obese individuals. Eur J Nutr 53, 1421–1429 (2014). https://doi.org/10.1007/s00394-013-0645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0645-0

Keywords

Navigation