Skip to main content

Advertisement

Log in

A mix of chlorogenic and caffeic acid reduces C/EBPß and PPAR-γ1 levels and counteracts lipid accumulation in macrophages

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Chlorogenic acid (CGA) and caffeic acid (CA) are bioactive compounds in whole grains, berries, apples, some citrus fruits and coffee, which are hypothesized to promote health-beneficial effects on the cardiovascular system. This study aimed to evaluate the capacity of CGA and CA to reduce lipid accumulation in macrophages, recognized as a critical stage in the progression of atherosclerosis. Furtherly, the modulation of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor- γ1 (PPAR-γ1), as transcription factors involved in lipid metabolism, was evaluated.

Methods

THP-1-derived macrophages were treated for 24 h with 0.03, 0.3, 3 and 30 μM of CGA and CA, tested alone or in combination, and a solution of oleic/palmitic acid (500 μM, 2:1 ratio). Lipid storage was assessed spectrophotometrically through fluorescent staining of cells with Nile red. C/EBPβ and PPAR-γ1 mRNA and protein levels were evaluated by RT-PCR and enzyme-linked immunosorbent assay, respectively.

Results

The mix of CGA + CA (1:1 ratio) reduced lipid accumulation at all concentrations tested, except for the highest one. The greatest effect ( − 65%; p < 0.01) was observed at the concentration of 0.3 μM for each compound. The same concentration significantly (p < 0.01) downregulated C/EBPβ and PPAR-γ1 gene expression and reduced their protein levels at 2 h and 24 h, respectively.

Conclusion

The results indicate that the capacity of CGA + CA mix to reduce lipid storage in macrophages is mediated by a reduction in the expression of transcription factors C/EBPβ and PPAR-γ1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marino M, Del Bo’ C, Martini M, Porrini M, Riso P (2020) A Review of Registered Clinical Trials on Dietary (Poly)Phenols: Past Efforts and Possible Future Directions. Foods 9(11), 1606; https://doi.org/10.3390/foods9111606.

  2. Martini D, Marino M, Angelino D, Del Bo’ C, Del Rio D, Riso P, Porrini M (2020) Role of berries in vascular function: a systematic review of human intervention studies. Nutr Rev 78(3):189–206. https://doi.org/10.1093/nutrit/nuz053

    Article  PubMed  Google Scholar 

  3. Widmer RJ, Freund MA, Flammer AJ, Sexton J, Lennon R, Romani A, Mulinacci N, Vinceri FF, Lerman LO, Lerman A (2012) Beneficial effects of polyphenol-rich olive oil in patients with early atherosclerosis. Eur J Nutr 52(3):1223–1231. https://doi.org/10.1007/s00394-012-0433-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Del Bo’ C, Deon V, Campolo J, Lanti C, Parolini M, Porrini M, Klimis-Zacas D, Riso P (2017) A serving of blueberry (V. corymbosum) acutely improves peripheral arterial dysfunction in young smokers and non-smokers: two randomized, controlled, crossover pilot studies. Food Funct 8(11):4108–4117. https://doi.org/10.1039/c7fo00861a

    Article  CAS  PubMed  Google Scholar 

  5. Wood E, Hein S, Heiss C, Williams C, Rodriguez-Mateos A (2019) Blueberries and cardiovascular disease prevention. Food Functn 10(12):7621–7633. https://doi.org/10.1039/c9fo02291k

    Article  CAS  Google Scholar 

  6. Lutz M, Fuentes E, Ávila F, Alarcón M, Palomo I (2019) Roles of Phenolic Compounds in the Reduction of Risk Factors of Cardiovascular Diseases. Molecules 24(2). pii: E366. doi: https://doi.org/10.3390/molecules24020366

  7. Godos J, Sinatra D, Blanco I, Mulè S, La Verde M, Marranzano M (2017) Association between dietary phenolic acids and hypertension in a mediterranean cohort. Nutrients 9(10):1069. https://doi.org/10.3390/nu9101069

    Article  CAS  PubMed Central  Google Scholar 

  8. Tajik N, Tajik M, Mack I, Enck P (2017) The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr 56(7):2215–2244. https://doi.org/10.1007/s00394-017-1379-1

    Article  CAS  PubMed  Google Scholar 

  9. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols Nutrients 2(12):1231–1246. https://doi.org/10.3390/nu2121231

    Article  CAS  PubMed  Google Scholar 

  10. Singla RK, Dubey AK, Garg A, Sharma RK, Fiorino M, Ameen SM, Haddad MA, Al-Hiary M (2019) Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int 102(5):1397–1400. https://doi.org/10.5740/jaoacint.19-0133

    Article  CAS  PubMed  Google Scholar 

  11. Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remón A, M'Hiri N, García-Lobato P, Manach C, Knox C, Eisner R, Wishart DS, Scalbert A (2013) Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013:bat070. https://doi.org/10.1093/database/bat070

    Article  PubMed  PubMed Central  Google Scholar 

  12. Neveu V, Perez-Jiménez J, Vos F, Crespy V, du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D, Scalbert A (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods, Database, Volume 2010, bap024, https://doi.org/10.1093/database/bap024

  13. Jakobek L, Seruga M (2012) Influence of Anthocyanins.; Flavonols and Phenolic Acids on the Antiradical Activity of Berries and Small Fruits. Int J Food Prop. 15:1. 122–133. https://doi.org/10.1080/10942911003754684

  14. Liang ND, Kitts D (2016) Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 8(1):16. https://doi.org/10.3390/nu8010016

    Article  CAS  Google Scholar 

  15. Farah A, de Paula Lima J (2019) Consumption of Chlorogenic Acids through Coffee and Health Implications. Beverages.; 5(1).; 11. https://doi.org/10.3390/beverages5010011

  16. Erk T, Hauser J, Williamson G, Renouf M, Steiling H, Dionisi F, Richling E (2014) Structure- and dose-absorption relationships of coffee polyphenols. BioFactors 40(1):103–112. https://doi.org/10.1002/biof.1101

    Article  CAS  PubMed  Google Scholar 

  17. Stalmach AC, Steiling H, Williamson G, Crozier A (2010) Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Arch Biochem Biophys 501(1):98–105. https://doi.org/10.1016/j.abb.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  18. Stalmach A, Mullen W, Barron D, Uchida K, Yokota T, Cavin C, Steiling H, Williamson G, Crozier A (2009) Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: Identification of biomarkers of coffee consumption. Drug Metab Dispos 37:1749–1758. https://doi.org/10.1124/dmd.109.028019

    Article  CAS  PubMed  Google Scholar 

  19. Monteiro M, Farah A, Perrone D, Trugo LC, Donangelo C (2007) Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J Nutr 137:2196–2221. https://doi.org/10.1093/jn/137.10.2196

    Article  CAS  PubMed  Google Scholar 

  20. Farah A, Monteiro M, Donangelo CM, Lafay S (2008) Chlorogenic acids from green coffee extract are highly bioavailable in humans. J Nutr 138(12):2309–2315. https://doi.org/10.3945/jn.108.095554

    Article  CAS  PubMed  Google Scholar 

  21. Scherbl D, Renouf M, Marmet C, Poquet L, Cristian I, Dahbane S, Emady-Azar S, Sauser J, Galan J, Dionisi F, Richling E (2017) Breakfast consumption induces retarded release of chlorogenic acid metabolites in humans. Eur Food Res Technol 243:791–806. https://doi.org/10.1007/s00217-016-2793-y

    Article  CAS  Google Scholar 

  22. Sobhani M, Farzaei MH, Kiani S, Khodarahmi S (2020) Immunomodulatory; Anti-inflammatory/antioxidant Effects of Polyphenols: A Comparative Review on the Parental Compounds and Their Metabolites. Food Rev Int. https://doi.org/10.1080/87559129.2020.1717523

  23. Carullo G, Governa P, Spizzirri UG, Biagi M, Sciubba F, Giorgi G, Loizzo MR, Di Cocco ME, Aiello F, Restuccia D (2020) Sangiovese cv pomace seeds extract-fortified kefir exerts anti-inflammatory activity in an in vitro model of intestinal epithelium using caco-2 cells. Antioxidants (Basel) 9(1):E54. https://doi.org/10.3390/antiox9010054

    Article  CAS  Google Scholar 

  24. Krga I, Tamaian R, Mercier S, Boby C, Monfoulet LE, Glibetic M, Morand C, Milenkovic D (2018) Anthocyanins and their gut metabolites attenuate monocyte adhesion and transendothelial migration through nutrigenomic mechanisms regulating endothelial cell permeability. Free Radic Biol Med 124:364–379. https://doi.org/10.1016/j.freeradbiomed.2018.06.027

    Article  CAS  PubMed  Google Scholar 

  25. Marino M, Del Bo’ C, Tucci M, Klimis-Zacas D, Riso P, Porrini M (2020) Modulation of adhesion process, E-selectin and VEGF production by anthocyanins and their metabolites in an in vitro model of atherosclerosis. Nutrients 12(3):655. https://doi.org/10.3390/nu12030655

    Article  CAS  PubMed Central  Google Scholar 

  26. Del Bo’ C, Marino M, Riso P, Møller P, Porrini M (2019) Anthocyanins and metabolites resolve TNF-α-mediated production of E-selectin and adhesion of monocytes to endothelial cells. Chem Biol Interact 300:49–55. https://doi.org/10.1016/j.cbi.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  27. Del Bo’ C, Cao Y, Roursgaard M, Riso P, Porrini M, Loft S, Møller P (2016) Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages. Eur J Nutr 55(1):171–182. https://doi.org/10.1007/s00394-015-0835-z

    Article  CAS  PubMed  Google Scholar 

  28. Tsakiroglou P, Weber J, Ashworth S, Del Bo C, Klimis-Zacas D (2019) Phenolic and anthocyanin fractions from wild blueberries (V. angustifolium) differentially modulate endothelial cell migration partially through RHOA and RAC1. J Cell Biochem. doi: https://doi.org/10.1002/jcb.28383

  29. Gibson MS, Domingues N, Vieira OV (2018) Lipid and non-lipid factors affecting macrophage dysfunction and inflammation in atherosclerosis. Front Physiol 9:654. https://doi.org/10.3389/fphys.2018.00654

    Article  PubMed  PubMed Central  Google Scholar 

  30. Orekhov AN, Myasoedova VA (2019) Low density lipoprotein-induced lipid accumulation is a key phenomenon of atherogenesis at the arterial cell level. Vessel Plus 3:3. https://doi.org/10.20517/2574-1209.2018.80

    Article  CAS  Google Scholar 

  31. Feingold KR, Shigenaga JK, Kazemi MR, McDonald CM, Patzek SM, Cross AS, Moser A, Grunfeld C (2012) Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol 10, Vol.92 (4), p.829–839. https://doi.org/10.1189/jlb.1111537

  32. Yu XH1, Fu YC, Zhang DW, Yin K, Tang CK, 2013 Foam cells in atherosclerosis Clin Chim Acta 424 245 252 https://doi.org/10.1016/j.cca.2013.06.006

  33. Tabas I (2009) Macrophage apoptosis in atherosclerosis: consequences on plaque progression and the role of endoplasmic reticulum stress. Antioxid Redox Signal 11(9):2333–2339. https://doi.org/10.1089/ARS.2009.2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brophy ML, Dong Y, Wu H, Rahman HN, Song K, Chen H (2017) Eating the dead to keep atherosclerosis at bay. Front Cardiovasc Med 4:2. https://doi.org/10.3389/fcvm.2017.00002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Remmerie A, Scott CL (2018) Macrophages and lipid metabolism. Cell Immunol 330:27–42. https://doi.org/10.1016/j.cellimm.2018.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Batista-Gonzalez A, Vidal R, Criollo A, Carreño LJ (2020) New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front Immunol 10:2993. https://doi.org/10.3389/fimmu.2019.02993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reschen ME, Gaulton KJ, Lin D, Soilleux EJ, Morris AJ, Smyth SS, O’Callaghan CA (2015) Lipid-induced epigenomic changes in human macrophages identify a coronary artery disease-associated variant that regulates PPAP2B Expression through Altered C/EBP-beta binding. PLoS Genet 11(4):e1005061. https://doi.org/10.1371/journal.pgen.1005061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rasheed A, Cummins CL (2018) Beyond the foam cell: the role of LXRs in preventing atherogenesis. Int J Mol Sci 19(8):2307. https://doi.org/10.3390/ijms19082307

    Article  CAS  PubMed Central  Google Scholar 

  39. Kaplan M, Aviram M, Hayek T (2012) Oxidative stress and macrophage foam cell formation during diabetes mellitus-induced atherogenesis: role of insulin therapy. Pharmacol Ther 136(2):175–185. https://doi.org/10.1016/j.pharmthera.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  40. Pineda Torra I, Chinetti G, Duval C, Fruchart JC, Staels B (2001) Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol 12(245):254. https://doi.org/10.1097/00041433-200106000-00002

    Article  Google Scholar 

  41. Li AC, Palinski W (2006) Peroxisome proliferator-activated receptors: how their effects on macrophages can lead to the development of a new drug therapy against atherosclerosis. Annu Rev Pharmacol Toxicol 46:1–39. https://doi.org/10.1146/annurev.pharmtox.46.120604.141247

    Article  CAS  PubMed  Google Scholar 

  42. Duval C, Chinetti G, Trottein F, Fruchart JC, Staels B (2002) The role of PPARs in atherosclerosis. Trends Mol Med 8:422–430. https://doi.org/10.1016/s1471-4914(02)02385-7

    Article  CAS  PubMed  Google Scholar 

  43. Rahman SM, Janssen RC, Choudhury M, Baquero KC, Aikens RM, de la Houssaye BA, Friedman JE (2012) CCAAT/Enhancer-binding Protein β (C/EBPβ) Expression Regulates Dietary-induced Inflammation in Macrophages and Adipose Tissue in Mice. J Biol Chem 287(41):34349–34360. https://doi.org/10.1074/jbc.m112.410613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clifford MN, Jaganath IB, Ludwig IA, Crozier A (2017) Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep 34(12):1391–1421. https://doi.org/10.1039/c7np00030h

    Article  CAS  PubMed  Google Scholar 

  45. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 26:171–176. https://doi.org/10.1002/ijc.2910260208

    Article  CAS  PubMed  Google Scholar 

  46. Vesterdal LK, Danielsen PH, Folkmann JK, Jespersen LF, Agu- ilar-Pelaez K, Roursgaard M, Loft S, Møller P, (2014) Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles. Toxicol Appl Pharmacol 274:350–360. https://doi.org/10.1016/j.taap.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  47. Valli V, Heilmann K, Danesi F, Bordoni A, Gerhäuser C (2018) Modulation of adipocyte differentiation and proadipogenic gene expression by sulforaphane, genistein, and docosahexaenoic acid as a first step to counteract obesity. Oxid Med Cell Longev 2018:1617202. https://doi.org/10.1155/2018/1617202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohan M, Aye PP, Borda JT, Alvarez X, Lackner AA (2008) CCAAT/enhancer binding protein beta is a major mediator of inflammation and viral replication in the gastrointestinal tract of simian immunodeficiency virus-infected rhesus macaques. Am J Pathol 173(1):106–118. https://doi.org/10.2353/ajpath.2008.080108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taverniti V, Minuzzo M, Arioli S, Junttila I, Hämäläinen S, Turpeinen H, Mora D, Karp M, Pesu M, Guglielmetti S (2012) In vitro functional and immunomodulatory properties of the Lactobacillus helveticus MIMLh5-Streptococcus salivarius ST3 association that are relevant to the development of a pharyngeal probiotic product. Appl Environ Microbiol 78(12):4209–4216. https://doi.org/10.1128/AEM.00325-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mele L, Mena P, Piemontese A, Marino V, López-Gutiérrez N, Bernini F, Brighenti F, Zanotti I, Del Rio D (2016) Antiatherogenic effects of ellagic acid and urolithins in vitro. Arch Biochem Biophys 599:42–50. https://doi.org/10.1016/j.abb.2016.02.017

    Article  CAS  PubMed  Google Scholar 

  51. Aranaz P, Navarro-Herrera D, Zabala M, Miguéliz I, Romo-Hualde A, López-Yoldi M, Martínez JA, Vizmanos JL, Milagro FI, González-Navarro CJ (2019) Phenolic compounds inhibit 3T3-L1 adipogenesis depending on the stage of differentiation and their binding affinity to PPARγ. Molecules 24(6):1045. https://doi.org/10.3390/molecules24061045

    Article  CAS  PubMed Central  Google Scholar 

  52. Zhao S, Li J, Wang L, Wu X (2016) Pomegranate peel polyphenols inhibit lipid accumulation and enhance cholesterol efflux in raw264.7 macrophages. Food Funct 7(7):3201–10. https://doi.org/10.1039/c6fo00347h

    Article  CAS  PubMed  Google Scholar 

  53. Yeh YT, Cho YY, Hsieh SC, Chiang AN (2018) Chinese olive extract ameliorates hepatic lipid accumulation in vitro and in vivo by regulating lipid metabolism. Sci Rep 8(1):1057. https://doi.org/10.1038/s41598-018-19553-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu S, Sui Q, Zhao Y, Chang X (2019) Lonicera caerulea Berry Polyphenols Activate SIRT1, Enhancing Inhibition of Raw264.7 Macrophage Foam Cell Formation and Promoting Cholesterol Efflux. J Agric Food Chem 67(25):7157–7166. doi: https://doi.org/10.1021/acs.jafc.9b02045

  55. Liu Y, Zhai T, Yu Q, Zhu J, Chen Y (2018) Effect of high exposure of chlorogenic acid on lipid accumulation and oxidative stress in oleic acid-treated HepG2 cells. Chin Herb Med 000(2018):1–7. https://doi.org/10.1016/j.chmed.2018.03.005

    Article  Google Scholar 

  56. Chen L, Teng H, Cao H (2019) Chlorogenic acid and caffeic acid from Sonchus oleraceus Linn synergistically attenuate insulin resistance and modulate glucose uptake in HepG2 cells. Food Chem Toxicol 127:182–187. https://doi.org/10.1016/j.fct.2019.03.038

    Article  CAS  PubMed  Google Scholar 

  57. Skroza D, Mekinić IG, Svilović S, Šimat V, Katalinić V (2015) Investigation of the potential synergistic effect of resveratrol with other phenolic compounds: A case of binary phenolic mixtures. J Food Compost Anal 38:13–18. https://doi.org/10.1016/j.jfca.2014.06.013

    Article  CAS  Google Scholar 

  58. Aslam S, Jahan N, Rahman K, Zafar F, Ashraf MY (2017) Synergistic interactions of polyphenols and their effect on antiradical potential. Pak J Pharm Sci 30(4):1297–1304 (PMID: 29039328)

    CAS  PubMed  Google Scholar 

  59. Mikstacka R, Rimando AM, Ignatowicz E (2010) Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro. Plant Foods Hum Nutr 65(1):57–63. https://doi.org/10.1007/s11130-010-0154-8

    Article  CAS  PubMed  Google Scholar 

  60. Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG, Chiueh CC, Clarkson TW, Cook RR, Diamond DM, Doolittle DJ, Dorato MA, Duke SO, Feinendegen L, Gardner DE, Hart RW, Hastings KL, Hayes AW, Hoffmann GR, Ives JA, Jaworowski Z, Johnson TE, Jonas WB, Kaminski NE, Keller JG, Klaunig JE, Knudsen TB, Kozumbo WJ, Lettieri T, Liu SZ, Maisseu A, Maynard KI, Masoro EJ, McClellan RO, Mehendale HM, Mothersill C, Newlin DB, Nigg HN, Oehme FW, Phalen RF, Philbert MA, Rattan SI, Riviere JE, Rodricks J, Sapolsky RM, Scott BR, Seymour C, Sinclair DA, Smith-Sonneborn J, Snow ET, Spear L, Stevenson DE, Thomas Y, Tubiana M, Williams GM, Mattson MP (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol 222(1):122–128. https://doi.org/10.1016/j.taap.2007.02.015

    Article  CAS  Google Scholar 

  61. Speciale A, Chirafisi J, Saija A, Cimino F (2011) Nutritional antioxidants and adaptive cell responses: an update. Curr Mol Med 11(9):770–789. https://doi.org/10.2174/156652411798062395

    Article  CAS  PubMed  Google Scholar 

  62. Noyan-Ashraf MH, Wu L, Wang R, Juurlink BH (2006) Dietary approaches to positively influence fetal determinants of adult health. FASEB J 20(2):371–373. https://doi.org/10.1096/fj.05-4889fje

    Article  CAS  PubMed  Google Scholar 

  63. Zhang JW, Tang QQ, Vinson C, Lane MD (2004) Dominant-negative C/EBP disrupts mitotic clonal expansion and differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A 101(1):43–47. https://doi.org/10.1073/pnas.0307229101

    Article  CAS  PubMed  Google Scholar 

  64. Farmer SR (2005) Regulation of PPARgamma activity during adipogenesis. Int J Obes (Lond) 29(Suppl 1):S13–S16. https://doi.org/10.1038/sj.ijo.0802907

    Article  CAS  Google Scholar 

  65. Tanaka T, Yoshida N, Kishimoto T, Akira S (1997) Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J16(24):7432–7443. https://doi.org/10.1093/emboj/16.24.7432

    Article  Google Scholar 

  66. Zuo Y, Qiang L (2006) Farmer SR (2006) Activation of CCAAT/enhancer-binding protein (C/EBP) alpha expression by C/EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter. J Biol Chem 281(12):7960–7967. https://doi.org/10.1074/jbc.M510682200

    Article  CAS  PubMed  Google Scholar 

  67. Poznyak AV, Wu WK, Melnichenko AA, Wetzker R, Sukhorukov V, Markin AM, Khotina VA, Orekhov AN (2020) Signaling pathways and key genes involved in regulation of foam cell formation in atherosclerosis. Cells 9(3):584. https://doi.org/10.3390/cells9030584

    Article  CAS  PubMed Central  Google Scholar 

  68. Moseti D, Regassa A, Kim WK (2016) Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int J Mol Sci 17(1):124. https://doi.org/10.3390/ijms17010124

    Article  CAS  PubMed Central  Google Scholar 

  69. Wu C, Luan H, Zhang X, Wang S, Zhang X, Sun X, Guo P (2014) Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264,7 macrophages. PLoS One 9(9):e95452. https://doi.org/10.1371/journal.pone.0095452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schwende H, Fitzke E, Ambs P, Dieter P (1996) Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J Leukoc Biol 59(4):555–561 (PMID: 8613704)

    Article  CAS  Google Scholar 

  71. Chang MY, Huang DY, Ho FM, Huang KC, Lin WW (2012) PKC-dependent human monocyte adhesion requires AMPK and Syk activation. PLoS ONE 7(7):e40999. https://doi.org/10.1371/journal.pone.0040999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Szilagyi K, Meijer AB, Neele AE, Verkuijlen P, Leitges M, Dabernat S, Förster-Waldl E, Boztug K, Belot A, Kuijpers TW, Kraal G, de Winther MP, van den Berg TK (2014) PKCδ is dispensible for oxLDL uptake and foam cell formation by human and murine macrophages. Cardiovasc Res 104(3):467–476. https://doi.org/10.1093/cvr/cvu213

    Article  CAS  PubMed  Google Scholar 

  73. Murase T, Misawa K, Minegishi Y, Aoki M, Ominami H, Suzuki Y, Shibuya Y, Hase T (2011) Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice. Am J Physiol Endocrinol Metab 300(1):E122–E133. https://doi.org/10.1152/ajpendo.00441.2010

    Article  CAS  PubMed  Google Scholar 

  74. Zhao NQ, Li XY, Wang L, Feng ZL, Li XF, Wen YF, Han JX (2017) Palmitate induces fat accumulation by activating C/EBPβ-mediated G0S2 expression in HepG2 cells. World J Gastroenterol 23(43):7705–7715. https://doi.org/10.3748/wjg.v23.i43.7705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ma J, Liu C, Yang Y, Yu J, Yang J, Yu S, Zhang J, Huang L (2018) C/EBPβ Acts Upstream of NF-κB P65 Subunit in Ox-LDL-Induced IL-1β Production by Macrophages. Cell Physiol Biochem 48(4):1605–1615. https://doi.org/10.1159/000492282

    Article  CAS  PubMed  Google Scholar 

  76. Mosqueda-Solís A, Lasa A, Gómez-Zorita S, Eseberri I, Picó C, Portillo MP (2017) Screening of potential anti-adipogenic effects of phenolic compounds showing different chemical structure in 3T3-L1 preadipocytes. Food Funct 8(10):3576–3586. https://doi.org/10.1039/c7fo00679a

    Article  CAS  PubMed  Google Scholar 

  77. Lu Y, Guo J, Di Y, Zong Y, Qu S, Tian J (2009) Proteomic analysis of the triglyceride-rich lipoprotein-laden foam cells. Mol Cells 28(3):175–181. https://doi.org/10.1007/s10059-009-0120-1

    Article  CAS  PubMed  Google Scholar 

  78. Korf H, Vander Beken S, Romano M, Steffensen KR, Stijlemans B, Gustafsson JA, Grooten J, Huygen K (2009) Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. J Clin Invest 119(6):1626–1637. https://doi.org/10.1172/JCI35288.1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rasheed A, Cummins CL (2018) Beyond the foam cell: The role of LXRs in preventing atherogenesis. Int J Mol Sci 19(8):2307. https://doi.org/10.3390/ijms19082307

    Article  CAS  PubMed Central  Google Scholar 

  80. Tangirala RK, Bischoff ED, Joseph SB, Wagner BL, Walczak R, Laffitte BA, Daige CL, Thomas D, Heyman RA, Mangelsdorf DJ, Wang X, Lusis AJ, Tontonoz P, Schulman IG (2002) Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proc Natl Acad Sci U S A 99(18):11896–11901. https://doi.org/10.1073/pnas.182199799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9:213–219. https://doi.org/10.1038/nm820

    Article  CAS  PubMed  Google Scholar 

  82. Zelcer N, Hong C, Boyadjian R, Tontonoz P (2009) LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 325(5936):100–104. https://doi.org/10.1126/science.1168974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Jacopo Tadini for the support in the experiments. The authors are grateful for support granted by Ministero delle Politiche Agricole, Alimentari e Forestali (Mipaaf) and the European Joint Programming Initiative “A Healthy Diet for a Healthy Life” (JPI HDHL) MaPLE. This work was supported by a contribution of the “Piano di sostegno alla ricerca- Linea 2, azione A-grant number PSR2018-2019 CDELB”. P.R. and C.D.B. acknowledge the European Cooperation for Science and Technology (COST Action) CA16112 “NutRedOx: Personalized Nutrition in Aging Society: Redox Control of Major Age-related Diseases”. The results provided in the present manuscript were obtained in the DeFENS Cell Culture Laboratory (University of Milan, Italy).”

Author information

Authors and Affiliations

Authors

Contributions

M.M. performed the experiments and wrote the first draft of the manuscript, C.D.B. designed the study, performed part of the experiments, the statistical analysis and wrote the first draft of the manuscript. M.T. and G. M. performed the experiments on gene expression supervised by V.T. S.V. performed the experiments on lipid accumulation supervised by M.M. P.R. and M.P. critically revised the manuscript and partially supported the research. P.M. critically revised the manuscript and edited the paper for language. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Cristian Del Bo′.

Ethics declarations

Conflict of interest

None of the authors has a conflict of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 28 KB)

Supplementary file2 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marino, M., Del Bo′, C., Tucci, M. et al. A mix of chlorogenic and caffeic acid reduces C/EBPß and PPAR-γ1 levels and counteracts lipid accumulation in macrophages. Eur J Nutr 61, 1003–1014 (2022). https://doi.org/10.1007/s00394-021-02714-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02714-w

Keywords

Navigation