Skip to main content

Advertisement

Log in

Inflammatory mediators in atherosclerotic vascular disease

  • INVITED EDITORIAL
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

An impressive body of work has established the current paradigm of atherosclerosis as an inflammatory process that promotes lesion development and progression. Early atheroma formation is characterized by leukocyte recruitment and expression of inflammatory mediators which is confounded in the context of hyperlipidemia. Evidence for an involvement of both innate and adaptive immunity in lesion formation has emerged, supporting a causal relation between the balance of pro- and anti–inflammatory cytokines and atherogenesis. The function of chemokines in distinct steps during mononuclear cell recruitment to vascular lesions has been studied in genetically deficient mice and other suitable models, and displays a high degree of specialization and cooperation. The contribution of platelet chemokines deposited on endothelium to monocyte arrest, differences in the presentation and involvement of chemokines between native and neointimal lesion formation, and related functions of macrophage migration inhibitory factor, a cytokine with striking structural homology to chemokines are of note. A novel role of chemokines in the recruitment of vascular progenitors during neointimal hyperplasia and in the recovery of endothelial denudation underscores their relevance for atherosclerotic vascular disease. The functional diversity of chemokines in vascular inflammation may potentially allow the selective therapeutic targeting of different atherosclerotic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ApoE:

apolipoprotein E

CCL:

CC chemokine ligand

CCR:

CC chemokine receptor

CD:

cluster of differentiation

CXCL:

CXC chemokine ligand

CXCR:

CXC chemokine receptor

EC:

endothelial cell

GRO:

growth-related oncogene

IFN–γ:

interferon–γ

IL:

interleukin

KC:

keratinocyte–derived chemokine

LDL–R:

low density lipoprotein receptor

MCP:

monocyte chemotactic protein

MIF:

macrophage migration inhibitory factor

Mig/IP10:

monokine induced by IFN–γ/IFN–γ–inducible protein–10

RANTES:

regulated on activation normal T cell expressed and secreted

SDF:

stromal cell–derived factor

SMC:

smooth muscle cell

TGF–β:

transforming growth factor–β

TNF:

tumor necrosis factor

References

  1. Abi-Younes S, Sauty A, Mach F, Sukhova GK, Libby P, Luster AD (2000) The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ Res 86:131–138

    Google Scholar 

  2. Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM (2000) The CXC chemokine receptor 2, CXCR2, Is the putative rexeptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol 165:5269–5277

    Google Scholar 

  3. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane- bound chemokine with a CX3C motif. Nature 385:640–644

    Article  CAS  PubMed  Google Scholar 

  4. Blake GJ, Ridker PM (2001) Novel clinical markers of vascular wall in.ammation. Circ Res 89:763–771

    Google Scholar 

  5. Bobryshev YV, Lord RS (1998) Mapping of vascular dendritic cells in atherosclerotic arteries suggests their involvement in local immune-in.ammatory reactions. Cardiovasc Res 37:799–810

    Google Scholar 

  6. Boisvert WA, Santiago R, Curtiss LK, Terkeltraub RA (1998) A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest 101:353–363

    Google Scholar 

  7. Boring L, Gosling J, Cleary M, Charo IF (1998) Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atheroslerosis. Nature 3954:894–897

    Google Scholar 

  8. Branen L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S (2004) Inhibition of Tumor Necrosis Factor- {alpha} Reduces Atherosclerosis in Apolipoprotein E Knockout Mice. Arterioscler Thromb Vasc Biol. Epub ahead of print

  9. Burger-Kentischer A, Goebel H, Seiler R, Fraedrich G, Schaefer HE, Dimmeler S, Kleemann R, Bernhagen J, Ihling C (2002) Expression of macrophage migration inhibitory factor in different stages of human atherosclerosis. Circulation 105:1561–1566

    Google Scholar 

  10. Chen Z, Sakuma M, Zago AC, Zhang X, Shi C, Leng L, Mizue Y, Bucala R, Simon DI (2004) Evidence for a role of macrophage migration inhibitory factor in vascular disease. Arterioscler Thromb Vasc Biol 4:709–714

    Google Scholar 

  11. Chuntharapai A, Lee J, Hebert CA, Kim KJ (1994) Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes. J Immunol 153:5682–5688

    Google Scholar 

  12. Cinamon G, Shinder V, Alon R (2001) Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat Immunol 2:515–522

    Google Scholar 

  13. Clemetson KJ, Clemetson JM, Proudfoot AE, Power CA, Baggioloni M, Wells TN (2000) Functional expression of CCR1, CCR3, CCR4 and CXCR4 chemokine receptors on human platelets. Blood 96:4046–4054

    Google Scholar 

  14. Combadiere C, Potteaux S, Gao JL, Esposito B, Casanova S, Lee EJ, Debre P, Tedgui A, Murphy PM, Mallat Z (2003) Decreased atherosclerotic lesion formation in CXCR1/apolipoprotein E double knockout mice. Circulation 107:1009–1016

    Google Scholar 

  15. Damas JK, Waehre T, Yndestadt A, Ueland T, Muller F, Eiken HG, Holm AM, Halvorsen B, Froland SS, Gullestad L, Aukrust P (2002) Stromal cell-derived factor-1_ in unstable angina: potential antiin.ammatory and matrix-stabilizing effects. Circulation 106:36–42

    Google Scholar 

  16. Dawson TC, Kuziel WA, Osahar TA, Maeda N (1999) Abesence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 143:205–211

    Google Scholar 

  17. Egashira K, Zhao Q, Kataoka C, Ohtani K, Usui M, Charo IF, Nishida K, Inoue S, Katoh M, Ichiki T, Takeshita A (2002) Importance of monocyte chemoattractant protein-1 pathway in neointimal hyperplasia after periarterial injury in mice and monkeys. Circ Res 90:1167–1172

    Google Scholar 

  18. Elhage R, Maret A, Pieraggi MT, Thiers JC, Arnal JF, Bayard F (1998) Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation 97:242–244

    Google Scholar 

  19. Fong AM, Robinson LA, Steeber DA, Tedder TF, Yoshie O, Imai T, Patel DD (1998) Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and acitivation under physiologic flow. J Exp Med 188:1413–1419

    Article  CAS  PubMed  Google Scholar 

  20. Furukawa Y, Matsumori A, Ohashi N, Shioi T, Ono K, Harada A, Matsushima K, Sasayama S (1999) Anti-monocyte chemoattractant proetin-1/monocyte chemotactic and activating factor antibody inhibits neointimal hyperplasia in injured rat carotid arteries. Circ Res 84:306–314

    Google Scholar 

  21. Garton KJ, Gough PJ, Blobel CP, Murphy G, Greaves DR, Dempsey PJ, Raines EW (2001) Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 276:37993–38001

    Google Scholar 

  22. George JN, Onofre AR (1982) Human platelet surface binding of endogenous secreted factor VIII-von Willebrand factor and platelet factor 4. Blood 59:194–197

    Google Scholar 

  23. Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA Jr, Luster AD, Luscinskas FW, Rosenzweig A (1999) MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398:718–723

    Google Scholar 

  24. Greaves DR, Häkkinen T, Lucas AD, Liddiard K, Jones E, Quinn CM, Senaratne J, Green FR, Tyson K, Boyle J, Shanahan C, Weissberg PL, Gordon S, Ylä-Hertualla S (2001) Linked chromosome 16q13 chemokines, macrophage-derived chemokine, fractalkine, and thymus- and activation-regulated chemokine, are expressed in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 21:923–929

    Google Scholar 

  25. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2:275–281

    Article  CAS  PubMed  Google Scholar 

  26. Guo J, Van Eck M, Twisk J, Maeda N, Benson GM, Groot PH, Van Berkel TJ (2003) Transplantation of monocyte CCchemokine receptor 2-deficient bone marrow into ApoE3-Leiden mice inhibits atherogenesis. Arterioscler Thromb Vasc Biol 23:447–453

    Google Scholar 

  27. Gupta S, Pablo AM, Jiang X, Wang N, Tall AR, Schindler C (1997) IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 99:2752–2761

    Google Scholar 

  28. Haley KJ, Lilly CM, Yang JH, Feng Y, Kennedy SP, Turi TG, Thompson JF, Sukhova GH, Libby P, Lee RT (2000) Overexpression of eotaxin and the CCR3 receptor in human atherosclerosis: using genomic technology to identify a potential novel pathway of vascular in.ammation. Circulation 102:2185–2189

    Google Scholar 

  29. Han CI, Campbell GR, Campbell JH (2001) Circulating bone marrow cells can contribute to neointimal formation. J Vasc Res 38:113–119

    Google Scholar 

  30. Han KH, Tangirala RK, Green SR, Quehenberger O (1998) Chemokine receptor CCR2 expression and monocyte chemoattractant protein-1-mediated chemotaxis in human monocytes. A regulatory role for plasma LDL. Arterioscler Thromb Vasc Biol 18:1983–1991

    Google Scholar 

  31. Hansson GK (2001) Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 21:1876–1990

    Google Scholar 

  32. Hansson GK, Libby P, Schonbeck U, Yan ZQ (2002) Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 91:281–291

    Google Scholar 

  33. Haque N, Zhang X, French D, Li J, Poon M, Fallon JT, Gabel B, Taubmann MB, Koschinsky M, Harpel PC (2000) CC chemokine I-309 is the principal monocyte chemoattractant induced by apolipoprotein(a) in human vascular endothelial cells. Circulation 102:786–792

    Google Scholar 

  34. Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, Kroczek RA (1998) CD40 ligand on activated platelets triggers an in.ammatory reaction of endothelial cells. Nature 391:591–594

    Google Scholar 

  35. Horvath C, Welt FG, Nedelmann M, Rao P, Rogers C (2002) Targeting CCR2 or CD18 inhibits experimental in-stent restenosis in primates: inhibitory potential depends on type of injury and leukocytes targed. Circ Res 90:488–494

    Google Scholar 

  36. Huo Y, Schober A, Forlow B, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley K (2003) Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nature Medicine 9:61–67

    Google Scholar 

  37. Huo Y, Weber C, Forlow SB, Sperandio M, Thatte J, Mack M, Jung S, Littman DR, Ley K (2001) The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. J Clin Invest 108:1307–1314

    Google Scholar 

  38. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1781

    CAS  PubMed  Google Scholar 

  39. Kuschert GS, Coulin F, Power CA, Proudfoot AE, Hubbard RE, Hoogewerf AJ, Wells TN (1999) Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemestry 38:12959–12968

    Google Scholar 

  40. Kuziel WA, Dawson TC, Quinones M, Garavito E, Chenaux G, Ahuja SS, Reddick RL, Maeda N (2003) CCR5 deficiency is not protective in the early stages of atherogenesis in apoE knockout mice. Atherosclerosis 167:25–32

    Google Scholar 

  41. Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30:973– 981

    Article  CAS  PubMed  Google Scholar 

  42. Lesnik P, Haskell CA, Charo IF. Decreased atherosclerosis in CX3CR1-/- mice reveals a role for fractalkine in atherogenesis (2003) J Clin Invest 111:333–340

    Article  CAS  PubMed  Google Scholar 

  43. Libby P (2002) In.ammation in atherosclerosis. Nature 420:868–874

    Article  CAS  PubMed  Google Scholar 

  44. Liehn EA, Schober A, Weber C (2004) Blockade of keratinocyte-derived chemokine inhibits endothelial recovery and enhances plaque formation after arterial injury in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 24:1891– 1896

    Google Scholar 

  45. Lin SG, Yu XY, Chen YX, Huang XR, Metz C, Bucala R, Lau CP, Lau HY (2000) De novo expression of macrophage migration inhibitory factor in atherogenesis in rabbits. Circ Res 87:1202–1208

    Google Scholar 

  46. Lucas AD, Bursill C, Guzik TJ, Sadowski J, Channon KM, Greaves DR (2003) Smooth muscle cells in human atherosclerotic plaques express the fractalkine receptor CX3CR1 and undergo chemotaxis to the CX3C chemokine fractalkine (CX3CL1). Circulation 108:2498–2504

    Google Scholar 

  47. Lundahl J, Skold CM, Hallden G, Hallgren M, Eklund A (1996) Monocyte and neutrophil adhesion to matrix proteins is selectively enhanced in the presence of inflammatory mediators. Scand J Immunol 44:143–149

    Google Scholar 

  48. Lutgens E, Gorelik L, Daemen MJ, de Muinck ED, Grewal IS, Koteliansky VE, Flavell RA (1999) Requirement for CD154 in the progression of atherosclerosis. Nat Med 5:1313–1316

    Google Scholar 

  49. Mach F, Sauty A, Iarossi AS, Sukhova GK, Neote K, Libby P, Luster AD (1999) Differential expression of three T lymphocyte- activating CXC chemokines by human atheroma-associated cells. J Clin Invest 104:1041–1050

    Google Scholar 

  50. Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P (1998) Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394:200–203

    Google Scholar 

  51. Mallat Z, Besnard S, Duriez M, Deleuze V, Emmanuel F, Bureau MF, Soubrier F, Esposito B, Duez H, Fievet C, Staels B, Duverger N, Scherman D, Tedgui A (1999) Protective role of interleukin-10 in atherosclerosis. Circ Res 85:17–24

    Google Scholar 

  52. Minami M, Kume N, Shimaoka T, Kataoka H, Hayashida K, Akiyama Y, Nagata I, Ando K, Nobuyoshi M, Hanyuu M, Komeda M, Yonehara S, Kita T (2001) Expression of SR-PSOX, a novel cell-surface scavenger receptor for phosphatidylserine and oxidized LDL in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 21:1796–1800

    Google Scholar 

  53. Mori E, Komori K, Yamaoka T, Tanii M, Kataoka C, Takeshita A, Usui M, Egashira K, Sugimachi K (2002) Essential role of monocyte chemoattractant protein-1 in development of restenotic changes (neointimal hyperplasia and constrictive remodeling) after balloon angioplasty in hypercholesterolemic rabbits. Circulation 105:2905–2910

    Google Scholar 

  54. Moser B, Barella L, Mattei S, Schumacher C, Boulay F, Colombo MP, Baggiolini M (1993) Expression of transcripts for two interleukin 8 receptors in human phagocytes, lymphocytes and melanoma cells. Biochem J 294:285–292

    Google Scholar 

  55. Namiki M, Kawashima S, Yamashita T, Ozaki M, Hirase T, Ishida T, Inoue N, Hirata K, Matsukawa A, Morishita R, Kaneda Y, Yokoyama M (2002) Local overexpression of monocyte chemoattractant protein-1 at vessel wall induces in.ltration of macrophages and formation of atherosclerotic lesion: synergism with hypercholesterolemia. Arterioscler Thromb Vasc Biol 22:115–120

    Google Scholar 

  56. Nelken NA, Coughlin SR, Gordon D, Wilcox JN (1991) Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest 88:1121–1127

    CAS  PubMed  Google Scholar 

  57. Ni W, Egashira K, Kitamoto S, Kataoka C, Koyanagi M, Inoue S, Imaizumi K, Akiyama C, Nishida KI, Takeshita A (2001) New anti-monocyte chemoattractant protein-1 gene therapy attenuates athersclerosis in apolipoprotein Eknockout Mice. Circulation 103:2096–2101

    Google Scholar 

  58. Pan JH, Sukhova GK, Yang JT, Wang B, Xie T, Fu H, Zhang Y, Satoskar AR, David JR, Metz CN, Bucala R, Fang K, Simon DI, Chapman HA, Libby P, Shi GP (2004) Macrophage migration inhibitory factor deficiency impairs atherosclerosis in lowdensity lipoprotein receptor-deficient mice. Circulation 109:3149–4153

    Google Scholar 

  59. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848

    Google Scholar 

  60. Piali L, Weber C, LaRosa G, Mackay CR, Springer TA, Clark-Lewis J, Moser B (1998) The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion- induction of effector T lymphocytes by the chemokines IP10 and Mig. Eur J. Immunol 28:961–972

    Google Scholar 

  61. Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, Arenzana- Seisdedos F, Magerus A, Caruz A, Fujii N, Nagler A, Lahav M, Szyper-Kravitz M, Zipori D, Lapidot T (2000) Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 106:1331–1339

    Google Scholar 

  62. Poole JC, Florey HW (1958) Changes in the endothelium of the aorta and the behaviour of macrophages in experimental atheroma of rabbits. J Pathol Bacteriol 75:245–251

    Google Scholar 

  63. Reape TJ, Groot PH (1999) Chemokines and atherosclerosis. Atherosclerosis 147: 213–225

    Article  CAS  PubMed  Google Scholar 

  64. Reape TJ, Rayner K, Manning CD, Gee AN, Barnette MS, Burnand KG, Groot PH (1999) Expression and cellular localization of the CC chemokines PARC and ELC in human atherosclerotic plaques. Am J Pathol 154:365–374

    Google Scholar 

  65. Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK (2003) Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 112:1342–1350

    Google Scholar 

  66. Roque M, Kim WJ, Gazdoin M, Malik A, Reis ED, Fallon JT, Badimo JJ, Charo IF, Taubman MB (2002) CCR2 deficiency decreases intimal hyperplasia after arterial injury. Arterioscler Thromb Vasc Biol 22:554–559

    Google Scholar 

  67. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409

    Article  CAS  PubMed  Google Scholar 

  68. Schäfer A, Schulz C, Eigenthaler M, Fraccarollo D, Kobsar A, Gawaz M, Ertl G, Walter U, Bauersachs J (2003) Novel role of the membrane bound chemokine fractalkine in platelet activation and adhesion. Blood 103:407–412

    Google Scholar 

  69. Schober A, Bernhagen J, Thiele M, Zeiffer U, Knarren S, Roller M, Bucala R, Weber C (2004) Stabilization of atherosclerotic plaques by blockade of macrophage migration inhibitory factor after vascular injury in apolipoprotein E-deficient mice. Circulation 109:380–385

    Google Scholar 

  70. Schober A, Knarren S, Lietz M, Lin E, Weber C (2003) Crucial role of stromal cell-derived factor-1a in neointima formation after vascular injury in apolipoprotein E-deficient mice. Circulation 108:2491–2497

    Google Scholar 

  71. Schober A, Manka D, von Hundelshausen P, Huo Y, Hanrath P, Sarembock IJ, Ley K, Weber C (2002) Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 106:1523–2529

    Google Scholar 

  72. Schober A, Zernecke A, Liehn EA, von Hundelshausen P, Knarren S, Kuziel WA, Weber C. CCR2 (2004) The crucial role of the CCL2/CXCR2 axis in neointimal hyperplasia after arterial injury in hyperlipidemic mice involves early monocytes recruitment and CCL2 presentation on platelets. Circ Res 95:1125–1133

    Google Scholar 

  73. Schreyer SA, Peschon JJ, LeBoeuf RC (1996) Accelerated atherosclerosis in mice lacking tumor necrosis factor receptor p55. J Biol Chem 271:26174–26178

    Google Scholar 

  74. Schreyer SA, Vick CM, LeBoeuf RC (2002) Loss of lymphotoxin-alpha but not tumor necrosis factor-alpha reduces atherosclerosis in mice. J Biol Chem 277:12364– 12368

    Google Scholar 

  75. Schwartz D, Andalibi A, Chaverri- Almada L, Berliner JA, Kirchgessner T, Fang ZT, Tekamp-Olson P, Lusis AJ, Gallegos C, Fogelman AM et al. (1994) Role of GRO family of chemokines in monocyte adhesion to MM-LDL-stimulated endothelium. J Clin Invest 94:1968–1973

    Google Scholar 

  76. Sheikine Y, Hansson G (2004) Chemokines and atherosclerosis. Ann Med 36:98–118

    Article  Google Scholar 

  77. Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM (2002) Smooth muscle progenitor cells in human blood. Circulation 106:1199–1204

    Google Scholar 

  78. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    Article  CAS  PubMed  Google Scholar 

  79. Steinberg D (2002) Atherogenesis in perspective: hypercholesterolemia and in.ammation as partners in crime. Nat Med 8:1211–1217

    Google Scholar 

  80. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nischikawa S, Kishimoto T, Nagasawa T (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestenial tract. Nature 393:591–594

    Google Scholar 

  81. Taubmann MB, Rollins BJ, Poon M, Marmur J, Green RS, Berk BC, Nadal-Ginard B (1992) JE mRNA accumulates rapidly in aortic injury and in platelet-derived growth factor-stimulated vascular smooth muscle cells. Circ Res 70:314–325

    Google Scholar 

  82. Tellides G, Tereb DA, Kirkiles-Smith NC, Kim RW, Wilson JH, Schechner JS, Lorber MI, Pober JS (2000) Interferongamma elicits arteriosclerosis in the absence of leukocytes. Nature 403:207– 211

    Google Scholar 

  83. Tsou CL, Haskell CA, Charo LF (2001) Tumor necrosis factor-α-converting enzyme mediates the inducible cleavage of fractalkine. J Biol Chem 276:44622– 44626

    Google Scholar 

  84. Veillard NR, Kwak B, Pelli G, Mulhaupt F, James RW, Proudfoot AE, Mach F (2004) Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res 94:253–261

    Google Scholar 

  85. Veillard NR, Steffens S, Burger F, Pelli G, Mach F (2004) Differential Expression Patterns of Proinflammatory and Antiin-flammatory Mediators During Atherogenesis in Mice. Arterioscler Thromb Vasc Biol 24:2339–2344

    Google Scholar 

  86. Veillard NR, Lu B, Pelli G, Kwak B, Charo I, Grerard C, Mach F (2003) Crucial role for both chemokines receptors CCR2 and CXCR3 in atherogenesis. Eur Heart J 24:A337

    Google Scholar 

  87. von Hundelshausen P, Weber KSC, Huo Y, Proudfoot AEI, Nelson PJ, Ley K, Weber C (2001) RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 103:1772–1777

    Google Scholar 

  88. Wang N, Tabas I, Winchester R, Ravalli S, Rabbani LE, Tall A (1996) Interleukin-8 is induced by cholesterol loading of macrophages and expressed by macrophage foam cells in human atheroma. J Biol Chem 271:8837–8842

    Google Scholar 

  89. Weber C (2003) Novel mechanistic concepts for the control of leukocyte transmigration; specialization of integrins, chemokines and junctional molecules. J Mol Med 81:4–19

    Google Scholar 

  90. Weber C, Schober A, Zernecke A (2004) Chemokines. Key Regulators of Mononuclear Cell Recruitment in Atherosclerotic Vascular Disease. Arterioscler Thromb Vasc Biol 24:1997–2008

    Google Scholar 

  91. Weber C, Weber KSC, Klier C, Gu H, Horuk R, Wank R, Nelson PJ (2001) Specialized roles of the chemokine receptors CCR1 and CCR5 in recruitment of monocytes and Th1-like/CD45RO+T cells. Blood 97:1144–1146

    Google Scholar 

  92. Weber KSC, von Hundelshausen P, Weber PC, Clark-Lewis I, Weber C (1999) Differential chemokine immobilization and hierarchical involvement of their receptors in monocyte arrest and transmigration on in.ammatory endothelium. Eur J Immunol 29:700–712

    Google Scholar 

  93. Wilcox JN, Nelken NA, Coughlin SR, Gordon D, Schall TJ (1994) Local expression of inflammatory cytokines in human atherosclerotic plaques. J Atheroscler Thromb 1:S10–13

    Google Scholar 

  94. Wuttge DM, Zhou X, Sheikine Y, Wagsater D, Stemme V, Hedin U, Stemme S, Hansson GK, Sirsjo A (2004) CXCL16/SR-PSOX is an interferon-γ-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arterioscler Thromb Vasc Biol 24:750–755

    Google Scholar 

  95. Ylä-Herttuala S, Lipton BA, Rosenfeld ME, Goldberg IJ, Steinberg D, Witztum JL (1991) Expression of monocyte chemoattractant protein-1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 88:5252– 5256

    Google Scholar 

  96. Yu X, Dluz S, Graves DT, Zhang L, Antoniades HN, Hollander W, Prusty S, Valente AJ, Schwartz CJ, Sonenshein GE (1992) Elevated expression of monocyte chemoattractant protein 1 by vascular smooth muscle cells in hypercholesterolemic primates. Proc Natl Acid Sci USA 89:6953–6957

    Google Scholar 

  97. Zernecke A, Weber KS, Erwig LP, Kluth DC, Schröppel D, Rees AJ, Weber C (2001) Combinatorial model of chemokine involvement in glomerular monocyte recruitment: role of CXCR2 in infiltration during nephrotoxic. J Immunol 166:5755–5762

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Weber MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zernecke, A., Weber, C. Inflammatory mediators in atherosclerotic vascular disease. Basic Res Cardiol 100, 93–101 (2005). https://doi.org/10.1007/s00395-005-0511-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-005-0511-6

Key words

Navigation