Skip to main content
Log in

Structural analysis of colloidal MnO x composites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We report on the detailed structure of MnO x nanoparticles (MnO x NP) which are either stabilized by cationic spherical polyelectrolyte brushes or by star-shaped cationic polyelectrolyte chains. In both cases, the polycation is composed of 2-(trimethylammonium)ethyl methacrylate chloride (TMAEMC). The analysis by transmission electron microscopy (TEM), cryogenic transmission electron microscopy (cryoTEM), and powder X-ray diffraction leads to the conclusion that the MnO x nanoparticles in aqueous dispersed state are composed of only a few or even single lamellae of c-disordered potassium birnessite (birnessite). Using star-shaped pTMAEMC homopolymer for the synthesis of composite particles, we obtain MnO x NP with an average diameter of about 5 nm. MnO x NP immobilized on cationic spherical polyelectrolyte brush have a length of about 20 nm and a width of 1.6 nm. Comparison of the extended X-ray absorption fine structure (EXAFS) spectra of the MnO x composites with reference spectra leads to the conclusion that all materials include c-disordered birnessite-type nanoparticles. A comparison of the energy shift of the Mn K-edge absorption peak of the X-ray absorption near-edge structure spectra of different manganese oxide reference materials with the different MnO x NP revealed an average oxidation state of about 3.5–3.7 for synthesized compounds. No distinct structural difference is found when comparing the dried samples to samples dispersed in water. A comparison of the EXAFS data of the birnessite nanoparticles with the crystal structure of macroscopic systems showed a compression along the c direction accompanied by a slight elongation within the ab plane of the layered material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. δ-MnO2 is a synthetic analogous to the mineral vernadite [54]. According to Villalobos et al., δ-MnO2 has the same local structure as randomly stacked “acid” birnessite. The only difference is the smaller crystallite size and the fewer number of stacked layers along the c-axis as compared to birnessite [42]

References

  1. Suib SL (2008) J Mater Chem 18:1623–1631

    Article  CAS  Google Scholar 

  2. Wang X, Li Y (2006) Pure Appl Chem 78:1–64

    Article  Google Scholar 

  3. Brock SL, Duan N, Tian ZR, Giraldo O, Zhou H, Suib SL (1998) Chem Mater 10:2619–2628

    Article  CAS  Google Scholar 

  4. Suib SL (2008) Acc Chem Res 41:479–487

    Article  CAS  Google Scholar 

  5. Cai J, Liu J, Suib SL (1998) Chem Mater 10:2619–2628

    Article  Google Scholar 

  6. Aronson BJ, Kinser AK, Passerini S, Smyrl WH, Stein A (1999) Chem Mater 11:949–957

    Article  CAS  Google Scholar 

  7. Shen XF, Ding YS, Liu J, Cai J, Laubernds K, Zerger RP, Vasiliev A, Aindow M, Suib SL (2005) Adv Mater 17:805–809

    Article  CAS  Google Scholar 

  8. Sakai N, Ebina Y, Takada K, Sasaki TJ (2005) Phys Chem B 109:9651–9655

    Article  CAS  Google Scholar 

  9. Yang DS, Wang MK (2001) Chem Mater 13:2589–2594

    Article  CAS  Google Scholar 

  10. Zhu S, Zhou H, Hibino M, Honma I, Ichihara M (2005) Adv Funct Mater 15:381–386

    Article  CAS  Google Scholar 

  11. Gaillot AC, Flot D, Drits VA, Manceau A, Burghammer M, Lanson B (2003) Chem Mater 15:4666–4678

    Article  CAS  Google Scholar 

  12. Feng Qu, Kanoh H, Ooi KJ (1999) Mater Chem 9:319–333

    Article  CAS  Google Scholar 

  13. Post JE, Veblen DR (1990) Am Mineral 75:477–489

    CAS  Google Scholar 

  14. Drits VA, Silvester EJ, Gorshkov AI, Manceau A (2002) Am Mineral 87:1631–1645

    Google Scholar 

  15. Ching S, Petrovay DJ, Jorgensen ML, Suib SL (1997) Inorg Chem 36:883–890

    Article  CAS  Google Scholar 

  16. Feng Q, Kanoh H, Miyai Y, Ooi K (1995) Chem Mater 7:1226–1232

    Article  CAS  Google Scholar 

  17. Lanson B, Drits VA, Gaillot AC, Silvester E, Plancon A, Manceau (2002) Am Mineral 87:1631–1645

    CAS  Google Scholar 

  18. Liu ZH, Ooi K, Kanoh H, Tang WP, Tomida T (2000) Langmuir 16:4154–4164

    Article  CAS  Google Scholar 

  19. Kai K, Yoshida Y, Kageyama H, Saito G, Ishigaki T, Furukawa Y, Kawamata J (2008) J Am Chem Soc 130:15938–15943

    Article  CAS  Google Scholar 

  20. Gao Q, Giraldo O, Tong W, Suib SL (2001) Chem Mater 13:778–786

    Article  CAS  Google Scholar 

  21. Omomo Y, Sasaki T, Wang L, Watanabe M (2003) J Am Chem Soc 125:3568–3575

    Article  CAS  Google Scholar 

  22. Oaki Y, Imai H (2007) Angew Chem Int Ed 46:4951–4955

    Article  CAS  Google Scholar 

  23. Croguennec L, Deniard P, Brec R, Lecerf A (1997) J Mater Chem 7:511–516

    Article  CAS  Google Scholar 

  24. Hara D, Shirakawa J, Ikuta H, Uchimoto Y, Wakihara M, Miyanaga T, Watanabe I (2003) J Mater Chem 13:897–903

    Article  CAS  Google Scholar 

  25. Petkov V, Ren Y, Saratovsky I, Pastén P, Gurr SJ, Hayward MA, Poeppelmeier KR, Gaillard JF (2009) ACS Nano 3:441–445

    Article  CAS  Google Scholar 

  26. Kobayashi S, Kottegoda IRM, Uchimoto Y, Wakihara M (2004) J Mater Chem 14:1843–1848

    Article  CAS  Google Scholar 

  27. Brock SL, Sanabria M, Urban V, Thiyagarajan P, Potter DI, Suib SL (2001) J Phys Chem B 105:5404–5410

    Article  CAS  Google Scholar 

  28. Silvester E, Manceau A, Drits VA (1997) Am Mineral 82:962–978

    CAS  Google Scholar 

  29. Gaillot AC, Drits VA, Manceau A, Lanson B (2007) Microporous Mesoporous Mater 98:267–282

    Article  CAS  Google Scholar 

  30. Fukuda K, Nakai I, Ebina Y, Tananka M, Mori T, Sasaki T (2006) J Phys Chem B 110:17070–17075

    Article  CAS  Google Scholar 

  31. Saratovsky I, Wightman PG, Pastén PA, Gaillard JF, Poeppelmeier KR (2006) J Am Chem Soc 128:11188–11198

    Article  CAS  Google Scholar 

  32. Grangeon S, Lanson B, Miyata N, Tani Y, Manceau A (2010) Am Mineral 95:1608–1616

    Article  CAS  Google Scholar 

  33. Ressler T, Brock SL, Wong J, Suib SL (1999) J Phys Chem B 103:6407–6420

    Article  CAS  Google Scholar 

  34. Polzer F, Kunz DA, Breu J, Ballauff M (2010) Chem Mater 22:2916–2922

    Article  CAS  Google Scholar 

  35. Sharma G, Ballauff M (2004) Macromol Rapid Commun 25:547–557

    Article  CAS  Google Scholar 

  36. Plamper FA, Schmalz A, Penott-Chang E, Drechsler M, Jusufi A, Ballauff M, Müller AHE (2007) Macromolecules 40:5689–5697

    Article  CAS  Google Scholar 

  37. Qiu J, Charleux B, Matyjaszewski K (2001) Prog Polym Sci 26:2083–2134

    Article  CAS  Google Scholar 

  38. Sala T, Sargent MVJ (1978) J Chem Soc Chem Commun 31:253–254

    Article  Google Scholar 

  39. Brock SL, Sanabria M, Urban V, Thiyagarajan P, Potter DI, Suib SL (1999) J Phys Chem B 103:7416–7428

    Article  CAS  Google Scholar 

  40. McKenzie RM (1978) Mineral Mag 38:493–502

    Article  Google Scholar 

  41. Kim SH, Kim SJ, Oh SM (1999) Chem Mater 11:557–563

    Article  CAS  Google Scholar 

  42. Villalobos M, Toner B, Bargar J, Sposito G (2003) Geochim Cosmochim Acta 67:2649–2662

    Article  CAS  Google Scholar 

  43. Crassous JJ, Rochette CN, Wittemann A, Schrinner M, Drechsler M, Ballauff M (2009) Langmuir 25:7862–7871

    Article  CAS  Google Scholar 

  44. Erko A, Packe I, Hellwig C, Fieber-Erdmann M, Pawlitzki O, Veldkamp M, Gudat W (2000) AIP Conference Proc 521:415–418

    Article  Google Scholar 

  45. Erko A, Packe I, Gudat W, Abrosimov N, Firsov A (2000) SPIE Rev 4145:122–128

    Article  Google Scholar 

  46. Newville M, Livins P, Yacoby Y, Stern EA, Rehr JJ (1993) Phys Rev B 47:14126–14131

    Article  CAS  Google Scholar 

  47. Newville M, Livins P, Yacoby Y, Rehr JJ, Stern EA (1993) Jpn J Appl Phys Part 1(32):125–127

    Google Scholar 

  48. Ravel B, Newville M, Cross JO, Bouldin CE (1995) Physica B 209:145–147

    Article  Google Scholar 

  49. Kelly SD, Hesterberg D, Ravel B (2008) Part 5 -Mineralogical methods in Ulery AL and Drees LR (Eds). Analysis of soils and minerals using X-ray absorption spectroscopy Methods of soil analysis Soil Science Society of America, Madison, WI, pp 367–463

    Google Scholar 

  50. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541

    Article  CAS  Google Scholar 

  51. Zabinsky SI, Rehr JJ, Ankudinov A, Albers R, Eller MJ (1995) Phys Rev B 52:2995–3009

    Article  CAS  Google Scholar 

  52. Schrinner M, Haupt B, Wittemann A (2008) Chem Eng J 144:138–144

    Article  CAS  Google Scholar 

  53. Grangeon S, Lanson B, Lanson M, Manceau A (2008) Mineral Mag 72:1279–1291

    Article  CAS  Google Scholar 

  54. Giovanelli R (1980) Miner Deposita (Berl) 15:251–253

    Google Scholar 

  55. Breu J, Seidl W, Stoll AZ (2003) Anorg Allg Chem 629:503–515

    Article  CAS  Google Scholar 

  56. Brunelli M, Lanzara A, Saini NL, Bianconi A, Valletta A, Radaelli PG (1997) J Supercond Chem B 10:315–317

    Article  CAS  Google Scholar 

  57. Belli M, Scafati A, Bianconi A, Mobilio S, Paladino L, Reale A, Buratini E (1980) Solid State Commun 35:355–361

    Article  CAS  Google Scholar 

  58. Koningsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. Wiley, New York, p 673

    Google Scholar 

  59. Manceau A, Combes JM (1988) Phys Chem Miner 15:283–295

    Article  CAS  Google Scholar 

  60. Manceau A, Gorshkov AI, Drits VA (1992) Am Mineral 77:1133–1143

    CAS  Google Scholar 

  61. Ma Y, Luo J, Suib SL (1999) Chem Mater 11:1972–1979

    Article  CAS  Google Scholar 

  62. The International Battery Material Association (1989) Handbook of manganese dioxide, battery grade. Glover D, Schumm B Jr, Kozowa A (eds). The International Battery Material Association, Strongsville. pp 25–32

  63. Manceau A, Gorshkov AI, Drits VA (1992) Am Mineral 77:1144–1157

    CAS  Google Scholar 

  64. Manceau A, Gorshkov AI, Drits VA (1988) Phys Chem Miner 15:283–295

    Article  CAS  Google Scholar 

  65. Lee PA, Pendry JB (1975) Phys Rev B 11:2795–2811

    Article  CAS  Google Scholar 

  66. Teo BK (1981) J Am Chem Soc 103:3990–4001

    Article  CAS  Google Scholar 

  67. Rechav B, Sicron N, Yacoby Y, Ravel B, Newville M, Stern EA (1993) Physica C 209:55–58

    Article  CAS  Google Scholar 

  68. Krappe HJ, Rossner HH (2009) Phys Scr 79:048302

    Article  Google Scholar 

  69. Stern EA (1988) Theory of EXAFS. In: Koningsberger DC, Prins R (eds) X-ray absorption. Wiley, New York, pp 3–52

    Google Scholar 

  70. Polzer F, Wunder S, Lu Y, Ballauff M (2012) J Catal 289:80–87

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft and the Henkel AG & Co. KGaA for the financial support. This work has been a part of the dissertation of Frank Polzer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Ballauff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 524 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polzer, F., Holub-Krappe, E., Rossner, H. et al. Structural analysis of colloidal MnO x composites. Colloid Polym Sci 291, 469–481 (2013). https://doi.org/10.1007/s00396-012-2725-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2725-8

Keywords

Navigation