Skip to main content
Log in

Triple stimuli-responsive polymers based on pyrene-functionalized poly(dimethylaminoethyl methacrylate): synthesis, self-assembled nanoparticles and controlled release

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A series of photo, temperature, and pH-responsive polymers have been synthesized by the quaternization of poly(dimethylaminoethyl methacrylate) (PDMAEMA) with 1-(bromomethyl)pyrene. Nanoparticles self-assembled from the pyrene-functionalized polymers in aqueous solution are demonstrated by transmission electron microscopy (TEM) and dynamic light scattering (DLS), the morphology of which can be changed under external stimulation by UV light, temperature, and pH. With the increase of the functionalization degree, the lower critical solution temperature (LCST) and the photo response of the pyrene-functionalized polymer increases, while the critical aggregation concentration (CAC) and the pH response decreases. The controlled release of encapsulated molecules such as Nile Red (NR)and anticancer drug doxorubicin (DOX) can be achieved under the triple stimulation from the self-assembled nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

References

  1. Wang GJ, Zhang J (2012) Photoresponsive molecular switches for biotechnology. J Photochem Photobiol C Photochem Rev 13:299–309

    Article  CAS  Google Scholar 

  2. Dai S, Ravi P, Tam KC (2009) Thermo- and photo-responsive polymeric systems. Soft Matter 5:2513–2533

    Article  CAS  Google Scholar 

  3. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    Article  CAS  Google Scholar 

  4. Jung HM, Price KE, McQuade DT (2003) Synthesis and characterization of cross-linked reverse micelles. J Am Chem Soc 125:5351–5355

    Article  CAS  Google Scholar 

  5. Li JB, Shi LQ, An YL, Li Y, Chen X, Dong HJ (2006) Reverse micelles of star-block copolymer as nanoreactors for preparation of gold nanoparticles. Polymer 47:8480–8487

    Article  CAS  Google Scholar 

  6. Bellomo EG, Wyrsta MD, Pakstis L, Pochan DJ, Deming TJ (2004) Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat Mater 3:244–248

    Article  CAS  Google Scholar 

  7. Bae Y, Fukushima S, Harada A, Kataoka K (2003) Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed 42:4640–4643

    Article  CAS  Google Scholar 

  8. Schilli CM, Zhang M, Rizzardo E, Thang SH, Chong YK, Edwards K, Karlsson G, Muller AHE (2004) A new double-responsive block copolymer synthesized via RAFT polymerization: poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules 37:7861–7866

    Article  CAS  Google Scholar 

  9. Napoli A, Valentini M, Tirelli N, Muller M, Hubbell JA (2004) Oxidation-responsive polymeric vesicles. Nat Mater 3:183–189

    Article  CAS  Google Scholar 

  10. Rapoport N, Pitt WG, Sun H, Nelson JL (2003) Drug delivery in polymeric micelles: from in vitro to in vivo. J Control Release 91:85–95

    Article  CAS  Google Scholar 

  11. Schumers JM, Fustin CA, Gohy JF (2010) Light-responsive block copolymers. Macromol Rapid Commun 31:1588–1607

    Article  CAS  Google Scholar 

  12. Yu HF (2014) Photoresponsive liquid crystalline block copolymers: from photonics to nanotechnology. Prog Polym Sci 39:781–815

    Article  CAS  Google Scholar 

  13. Yu HF (2014) Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores. J Mater Chem C 2:3047–3054

    Article  CAS  Google Scholar 

  14. Wang G, Tong X, Zhao Y (2004) Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 37:8911–8917

    Article  CAS  Google Scholar 

  15. Tong X, Wang G, Soldera A, Zhao Y (2005) How can azobenzene block copolymer vesicles be dissociated and reformed by light? J Phys Chem B 109:20281–20287

    Article  CAS  Google Scholar 

  16. Jiang J, Tong X, Zhao Y (2005) A new design for light-breakable polymer micelles. J Am Chem Soc 127:8290–8291

    Article  CAS  Google Scholar 

  17. Jiang J, Tong X, Morris D, Zhao Y (2006) Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules 39:4633–4640

    Article  CAS  Google Scholar 

  18. Babin J, Pelletier M, Lepage M, Allard JF, Morris D, Zhao Y (2009) A new two-photon-sensitive block copolymer nanocarrier. Angew Chem Int Ed 48:3329–3332

    Article  CAS  Google Scholar 

  19. Smith AE, Xu XW, Kirkland SE, Savin DA, McCormick CL (2010) "Schizophrenic" self-assembly of block copolymers synthesized via aqueous RAFT polymerization: from micelles to vesicles. Macromolecules 43:1210–1217

    Article  CAS  Google Scholar 

  20. Bao HQ, Li L, Gan LH, Ping Y, Li J, Ravi P (2010) Thermo- and pH-responsive association behavior of dual hydrophilic graft chitosan terpolymer synthesized via ATRP and click chemistry. Macromolecules 43:5679–5687

    Article  CAS  Google Scholar 

  21. Liu X, Ni P, He JL, Zhang MZ (2010) Synthesis and micellization of pH/temperature-responsive double-hydrophilic diblock copolymers polyphosphoester-block-poly[2-(dimethylamino)ethyl methacrylate] prepared via ROP and ATRP. Macromolecules 43:4771–4781

    Article  CAS  Google Scholar 

  22. Ma L, Liu RG, Tan JJ, Wang DQ, Jin X, Kang HL, Wu M, Huang Y (2010) Self-assembly and dual-stimuli sensitivities of hydroxypropylcellulose-graft-poly(N, N-dimethyl aminoethyl methacrylate) copolymers in aqueous solution. Langmuir 26:8697–8703

    Article  CAS  Google Scholar 

  23. Ma L, Geng HP, Song JX, Li JZ, Chen GX, Li QF (2011) Hierarchical self-Assembly of polyhedral oligomeric silsesquioxane end-capped stimuli-responsive polymer: from single micelle to complex micelle. J Phys Chem B 115:10586–10591

    Article  CAS  Google Scholar 

  24. Han DH, Tong X, Zhao Y (2012) Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir 28:2327–2331

    Article  CAS  Google Scholar 

  25. Feng Z, Lin L, Zeng Z, Yu YL (2010) Dual responsive block copolymer micelles functionalized by NIPAM and azobenzene. Macromol Rapid Commun 31:640–644

    Article  CAS  Google Scholar 

  26. Dong J, Zhang RC, Wu H, Zhan XW, Yang H, Zhu SQ, Wang GJ (2014) Polymer nanoparticles for controlled release stimulated by visible light and pH. Macromol Rapid Commun 35:1255–1259

    Article  CAS  Google Scholar 

  27. Feng N, Han GX, Dong J, Wu H, Zheng YD, Wang GJ (2014) Nanoparticle assembly of a photo- and pH-responsive random azobenzene copolymer. J Colloid Interface Sci 421:15–21

    Article  CAS  Google Scholar 

  28. Feng N, Dong J, Han GX, Wang GJ (2014) Polymer nanoparticles based on pyrene functionalized poly( acrylic acid) for controlled release under photo and pH stimulation. Macromol Rapid Commun 35:721–726

    Article  CAS  Google Scholar 

  29. Klaikherd A, Nagamani C, Thayumanavan S (2009) Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc 131:4830–4833

    Article  CAS  Google Scholar 

  30. Wang K, Guo DS, Wang X, Liu Y (2011) Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano 5:2880–2894

    Article  CAS  Google Scholar 

  31. Dong J, Wang YN, Zhang J, Zhan XW, Zhu SQ, Yang H, Wang GJ (2013) Multiple stimuli-responsive polymeric micelles for controlled release. Soft Matter 9:370–373

    Article  CAS  Google Scholar 

  32. Jiang X, Lok MC, Hennink WE (2007) Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery. Bioconjug Chem 18:2077–2084

    Article  CAS  Google Scholar 

  33. Lin S, Du F, Wang Y, Ji SP, Liang DH, Yu L, Li ZC (2007) An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems. Biomacromolecules 9:109–115

    Article  Google Scholar 

  34. Liu F, Urban MW (2008) Dual temperature and pH responsiveness of poly(2-(N, N-dimethylamino)ethyl methacrylate-co-n-butyl acrylate) colloidal dispersions and their films. Macromolecules 41:6531–6539

    Article  CAS  Google Scholar 

  35. Yamamoto S, Pietrasik J, Matyjaszewski K (2008) Temperature- and pH-responsive dense copolymer brushes prepared by ATRP. Macromolecules 41:7013–7020

    Article  CAS  Google Scholar 

  36. Yuk SH, Cho SH, Lee SH (1997) pH/Temperature-responsive polymer composed of poly((N, N-dimethylamino)ethyl methacrylate-co-ethylacrylamide). Macromolecules 30:6856–6859

    Article  CAS  Google Scholar 

  37. Xue W, Champ S, Huglin MB, Jones TG (2004) Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic). J Eur Polym J 40:703–712

    Article  CAS  Google Scholar 

  38. Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500

    Article  CAS  Google Scholar 

  39. Noda T, Hashidzume A, Morishima Y (2001) Effects of spacer length on the side-chain micellization in random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and methacrylates substituted with ethylene oxide-based surfactant moieties. Macromolecules 34:1308–1317

    Article  CAS  Google Scholar 

  40. Wang GJ, Bobkov GV, Mikhailov SN, Schepers G, Van Aerschot A, Rozenski J, Van der Auweraer M, Herdewijn P, De Feyter S (2009) Detection of RNA hybridization by pyrene-labeled probes. ChemBioChem 10:1175–1185

    Article  CAS  Google Scholar 

  41. Wu H, Dong J, Li CC, Liu YB, Feng N, Xu LP, Zhan XW, Yang H, Wang GJ (2013) Multi-responsive nitrobenzene-based amphiphilic random copolymer assemblies. Chem Commun 49:3516–3518

    Article  CAS  Google Scholar 

  42. Prazeres TJV, Farinha JPS, Martinho JMG (2008) Control of oligonucleotide distribution on the shell of thermo-responsive polymer nanoparticles. J Phys Chem C 112:16331–16339

    Article  CAS  Google Scholar 

  43. Ringsdorf H, Venzmer J (1991) Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides). Macromolecules 24:1678–1686

    Article  CAS  Google Scholar 

  44. Rana DK, Dhar S, Sarkar A, Bhattacharya SC (2011) Dual intramolecular hydrogen bond as a switch for inducing ground and excited state intramolecular double proton transfer in doxorubicin: an excitation wavelength dependence study. J Phys Chem A 115:9169–9179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Program for New Century Excellent Talents in University (NCET-11-0582), the Fundamental Research Funds for the Central Universities (FRF-TP-12-004B), and the National Natural Science Foundation of China (Grant Nos. 51373025, 21025418, 51025313, and 51073096) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojie Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.02 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Zhang, R., Zhan, X. et al. Triple stimuli-responsive polymers based on pyrene-functionalized poly(dimethylaminoethyl methacrylate): synthesis, self-assembled nanoparticles and controlled release. Colloid Polym Sci 292, 2735–2744 (2014). https://doi.org/10.1007/s00396-014-3358-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3358-x

Keyword

Navigation