Skip to main content
Log in

RAFT synthesized poly-N-vinylsuccinimide macromolecules: properties in dilute solutions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A complex study of the properties of poly-N-vinylsuccinimides synthesized by the reversible addition-fragmentation chain transfer polymerization (RAFT) was carried out by the methods of molecular hydrodynamics. Molecular masses were determined from the sedimentation-diffusion analysis, the range was 5000 < M, g/mol < 68000. Scaling relationships of hydrodynamic characteristics with molecular mass were established, and the conformational characteristics of molecular chains of poly-N-vinylsuccinimides were estimated. The value of the statistical segment, determined from the data on translational and rotational friction, was (2.7 ± 0.1) nm. The polydispersity of several samples was evaluated from the results on velocity sedimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kirsh YE (1998) Water soluble poly(N-vinylamides): synthesis and physicochemical properties. Wiley, Chichester. https://doi.org/10.1002/(SICI)1097-0126(199905)48:5%3C426::AID-PI163%3E3.0.CO;2-%23

    Book  Google Scholar 

  2. Cortez-Lemus NA (2016) Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym Sci 53:1–51. https://doi.org/10.1016/j.progpolymsci.2015.08.001

    Article  CAS  Google Scholar 

  3. Eisele M, Burchard W (1990) Hydrophobic water−soluble polymers. 1. Dilute solution properties of poly(1-vinyl-2-piperidone) and poly(N-vinylcaprolactam). Macromol Chem Phys 191:169–184. https://doi.org/10.1002/macp.1990.021910114

    Article  CAS  Google Scholar 

  4. Pavlov G, Panarin E, Korneeva E, Kurochkin E, Baikov V, Uschakova V (1990) Hydrodynamic properties of poly(1-vinyl-2-pyrrolidone) molecules in dilute solution. Macromol Chem Phys 191:2889–2899. https://doi.org/10.1002/macp.1990.021911205

    Article  CAS  Google Scholar 

  5. Panarin E, Lavrov N, Solovsky M, Shalnova L (2014) Polymers - carriers of biologically active substances (in russian), OCOP “profession”, St. Petersburg ISBN: 978-5-91884-058-0

  6. Kirsh YE (1988) Poly-N-vinylpirrolidone and other Poly-N-vinylamides: synthesis and physicochemical properties (in russian), Nauka, Moscow. ISBN: 5-02-004498-9

  7. Lavrov N, Shalnova L, Nikolaev A (1997) Features of obtaining, properties and prospects of use of (co)polymers of N-vinylsuccinimide. J Appl Chem (In Rusian) 70:1356–1363 ISSN 0044-4618

    CAS  Google Scholar 

  8. Shalnova L, Nikolaev A (2000) Medical supplies based on -N-vinylamidosuccinic acid copolymers. Plastics 3:42–45 ISSN 0554-2901

    Google Scholar 

  9. Lavrov N (2011) Polymers based on N-vinyl succinimide, OCOP “Profession”, St. Petersburg. ISBN: 978-5-91884-031-3

  10. Schlumbom PC (1960) Beitrag zur Polymerisation des N-Vinylsuccinimids. PhD thesis, Eidgentsssischen Technischen Hochschule Zurich, Juris-Verlag, Zurich. https://doi.org/10.3929/ethz-a-000087882

  11. Moad G (2015) RAFT polymerization – then and now. In: Matyjaszewski K, Sumerlin BS, Tsarevsky NV and Chiefari J (eds). Controlled radical polymerization: mechanisms. Australia: ACS Symposium Series, 1187: ch.12. 211-246. https://doi.org/10.1021/bk-2015-1187.ch012 .

  12. Barner-Kowollik C (2008) Handbook of RAFT polymerization. Wiley, Weinheim. https://doi.org/10.1002/9783527622757.ch1

    Book  Google Scholar 

  13. Chernikova E, Sivtsov E (2017) Reversible addition-fragmentation chain-transfer polymerization: fundamentals and use in practice. Polym Sci Ser B 59:117–146. https://link.springer.com/article/10.1134/S1560090417020038. https://doi.org/10.1134/S1560090417020038, https://www.researchgate.net/publication/316703333_Reversible_addition-fragmentation_chain-transfer_polymerization_Fundamentals_and_use_in_practice

  14. Tanford C (1961) Physical chemistry of macromolecules, vol 62. Wiley, New York, pp S22–S23. https://doi.org/10.1002/pol.1962.1206217338

    Book  Google Scholar 

  15. Tsvetkov V, Eskin V, Frenkel S (1971) Structure of macromolecules in solution. National Lending Library for science and technology. Google Scholar, Boston

    Google Scholar 

  16. Cantor CR, Schimmel PR (1980) Biophysical chemistry. W H Freeman & Company, San Francisco. https://doi.org/10.1080/00327488108068729

    Book  Google Scholar 

  17. Fujita H (1990) Polymer solutions. Elsevier, Amsterdam eBook ISBN: 9780444596635

    Google Scholar 

  18. Yamakawa H (1971) Modern theory of polymer solutions. ed by Hurper & Row, Kioto. http://hdl.handle.net/2433/50527

  19. Tsvetkov VN (1989) Rigid-chain polymers: hydrodynamic and optical properties in solution. Consultants Bureau Google Scholar

  20. Yamakawa H, Fujii M (1973) Translational friction coefficient of wormlike chains. Macromolecules 6:407–415. https://doi.org/10.1021/ma60033a018 https://pubs.acs.org/doi/abs/10.1021/ma60033a018

    Article  CAS  Google Scholar 

  21. Yamakawa H, Fujii M (1974) Intrinsic viscosity of wormlike chains. Determination of the Shift Factor. Macromolecules 7:128–135. https://pubs.acs.org/doi/abs/10.1021/ma60037a024. https://doi.org/10.1021/ma60037a024

    Article  CAS  PubMed  Google Scholar 

  22. Chernikova E, Sivtsov E (2017) Reversible addition-fragmentation chain-transfer polymerization: fundamentals and use in practice. Polym Sci Ser B 59:117–146. https://doi.org/10.1134/S1560090417020038

    Article  CAS  Google Scholar 

  23. Sivtsov E, Chernikova E, Gostev A, Garina E (2010) Controlled free-radical copolymerization of n-vinyl succinimide and n-butyl acrylate via a reversible addition–fragmentation chain transfer (raft) technique. Macromol Symp 296:112–120. https://doi.org/10.1002/masy.201051017

    Article  CAS  Google Scholar 

  24. Lavrenko P, Okatova O (1977) The new cell and method of forming a boundary in the study of diffusion of macromolecules in solution. Polym Sci USSR 19:3049–3054. https://doi.org/10.1016/0032-3950(77)90328-8

    Article  Google Scholar 

  25. Lavrenko V, Gubarev A, Lavrenko P, Okatova O, Pavlov G, Panarin E (2013) Processing of digital interference images obtained on the Tsvetkov’s diffusometer. Ind Lab Mater Diagn (in Russian) 79:33–36 ISSN:2588-0187

    Google Scholar 

  26. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619. https://doi.org/10.1016/S0006-3495(00)76713-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown P, Schuck P (2008) A new adaptive grid-size algorithm for the simulation of sedimentation velocity profiles in analytical ultracentrifugation. Comput Phys Commun 178:105–120. https://doi.org/10.1016/j.cpc.2007.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kratky O, Leopold H, Stabinger H (1973) The determination of the partial specific volume of proteins by the mechanical oscillator technique. Methods Enzymol 27:98–110. https://doi.org/10.1016/S0076-6879(73)27007-6

    Article  CAS  PubMed  Google Scholar 

  29. Tsvetkov V, Lavrenko P, Bushin S (1984) Hydrodynamic invariant of polymer molecules. J Polym Sci Polym Chem 22:3447–3460. https://doi.org/10.1002/pol.1984.170221160

    Article  CAS  Google Scholar 

  30. Hearst J, Stockmayer W (1962) Sedimentation constants of broken chains and wormlike coils. J Chem Phys 37:1425–1433. https://doi.org/10.1063/1.1733300

    Article  CAS  Google Scholar 

  31. Bushin S, Tsvetkov V, Lysenko E, Emelyanov V (1981) The sedimentation-diffusion and viscometric analysis of the conformation properties and molecular rigidity of ladder-like polyphenyl siloxane in solution. Polym Sci Ser A 23:2705–2715. https://scholar.google.ru/scholar?hl=ru&as_sdt=0%2C5&q=DOI%3A+10.1016%2F0032-3950%2881%2990043-5&btnG. https://doi.org/10.1016/0032-3950(81)90043-5

    Article  Google Scholar 

  32. Tsvetkov V, Lavrenko P, Pavlov G, Bushin S, Astapenko E, Boikov A, Shildyaeva N, Didenko S, Malichenko B (1982). Polym Sci Ser A 24:2689–2700

    Google Scholar 

  33. Pavlov G, Selyunin S, Shildyaeva N, Yakopson S, Efros L (1985) Translational friction and the characteristic visocity of polyamide benzimidazole molecules in solution. Polym Sci Ser A 27:1823–1829. https://doi.org/10.1016/0032-3950(85)90200-X

    Article  Google Scholar 

  34. Bohdanecky M (1983) Monte Carlo calculation of hydrodynamic properties of linear and cyclic polymers in good solvents. Macromolecules 16:1483–1492. https://pubs.acs.org/doi/abs/10.1021/ma00243a014, https://scholar.google.ru/scholar?hl=ru&as_sdt=0%2C5&q=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Fabs%2F10.1021%2Fma00243a014&btnG. https://doi.org/10.1021/ma00243a014

  35. Zimm BH (1980) Chain molecule hydrodynamics by the Monte-Carlo method and the validity of the Kirkwood-Riseman approximation. Macromolecules 13:592–602. https://pubs.acs.org/doi/abs/10.1021/ma60075a022. https://scholar.google.ru/scholar?hl=ru&as_sdt=0%2C5&q=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Fabs%2F10.1021%2Fma60075a022&btnG

  36. de la Torre JG, Jimenez A, Freire JJ (1982) Monte Carlo calculation of hydrodynamic properties of freely jointed, freely rotating, and real polymethylene chains. Macromolecules 15:148–154. https://scholar.google.ru/scholar?hl=ru&as_sdt=0%2C5&q=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Fabs%2F10.1021%2Fma00229a030&btnG. https://doi.org/10.1021/ma00229a030, https://pubs.acs.org/doi/abs/10.1021/ma00229a030

  37. Bernal JMG, Tirado MM, Freire JJ, de la Torre JG (1991) Monte Carlo calculation of hydrodynamic properties of linear and cyclic polymers in good solvents. Macromolecules 24:593–598. https://pubs.acs.org/doi/abs/10.1021/ma00002a038, https://scholar.google.ru/scholar?hl=ru&as_sdt=0%2C5&q=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Fabs%2F10.1021%2Fma00002a038&btnG. https://doi.org/10.1021/ma00002a038

  38. Oono Y (1985) Statistical physics of polymer solutions: conformation-space renormalization-group approach. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 61, pp 301–437. ISSN: 0065-2385. https://doi.org/10.1002/9780470142851.ch5

    Chapter  Google Scholar 

  39. Pavlov GM (2016) Different levels of self-sufficiency of the velocity sedimentation method in the study of linear macromolecules. In: Uchiyama S, Arisaka F, Stafford WF, Laue T (eds) Analytical ultracentrifugation: instrumentation, software, and applications. Springer, Tokyo, pp 269–307. https://doi.org/10.1007/978-4-431-55985-6_14ch.14

    Chapter  Google Scholar 

Download references

Funding

The work is done within the framework of the scientific work plan (state task) of Institute of macromolecular compounds RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. M. Pavlov or O. V. Okatova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, G.M., Okatova, O.V., Gosteva, A.A. et al. RAFT synthesized poly-N-vinylsuccinimide macromolecules: properties in dilute solutions. Colloid Polym Sci 297, 1213–1221 (2019). https://doi.org/10.1007/s00396-019-04540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04540-3

Keywords

Navigation