Skip to main content
Log in

Self-organization of thermosensitive star-shaped poly(2-isopropyl-2-oxazolines) influenced by arm number and generation of carbosilane dendrimer core in aqueous solutions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Self-organization of diphilic star-shaped poly(2-isopropyl-2-oxazoline) with carbosilane dendrimer core was investigated in aqueous solutions on heating by light scattering and turbidimetry methods. The temperature dependences of light scattering intensity, optical transmittance, hydrodynamic radii of each type of particles and their contribution to integral light scattering intensity were obtained. The phase separation temperatures were determined at concentration ranging from 0.00023 to 0.0135 g cm−3. It is shown that these temperatures are higher than for the eight-arm analog because of the different degree of hydrophobic core shielding by hydrophilic arms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Soleymani M, Edrissi M, Alizadeh AM (2015) Thermosensitive polymer-coated La0.73Sr0.27MnO3 nanoparticles: potential applications in cancer hyperthermia therapy and magnetically activated drug delivery systems. Polym J 47:797–801

    CAS  Google Scholar 

  2. Bagán H, Kamra T, Jiang L, Ye L (2017) Thermoresponsive polymer brushes on organic microspheres for biomolecular separation and immobilization. Macromol Chem Phys 218:1600432

    Google Scholar 

  3. Wagner AM, Spencer DS, Peppas NA (2018) Advanced architectures in the design of responsive polymers for cancer nanomedicine. J Appl Polym Sci 135:46154

    PubMed  PubMed Central  Google Scholar 

  4. Khutoryanskiy V, Georgiou T (2018) Temperature-responsive polymers: chemistry, properties, and applications. JohnWiley & Sons Ltd, Chichester

    Google Scholar 

  5. Bordat A, Boissenot T, Nicolas J, Tsapis N (2018) Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2018.10.005

  6. Cao M, Nie H, Hou Y, Han G, Zhang W (2019) Synthesis of star thermoresponsive amphiphilic block copolymer nano-assemblies and the effect of topology on their thermoresponse. Polym Chem 10:403–411

    CAS  Google Scholar 

  7. Cao M, Han G, Duan W, Zhang W (2018) Synthesis of multi-arm star thermo-responsive polymers and topology effects on phase transition. Polym Chem 9:2625–2633

    CAS  Google Scholar 

  8. Vogt AP, Sumerlin BS (2008) Tuning the temperature response of branched poly(N-isopropylacrylamide) prepared by RAFT polymerization. Macromolecules 41:7368–7373

    CAS  Google Scholar 

  9. Koch C, Likos CN, Panagiotopoulos AZ, Lo Verso F (2011) Self-assembly scenarios of block copolymer stars. Mol Phys 109:3049–3060

    CAS  Google Scholar 

  10. Amirova AI, Golub OV, Kirila TU, Razina AB, Tenkovtsev AV, Filippov AP (2016) The effect of arm number and solution concentration on phase separation of thermosensitive poly(2-isopropyl-2-oxazoline) stars in aqueous solutions. Colloid Polym Sci 294:947–956

    CAS  Google Scholar 

  11. Daoud M, Cotton JP (1982) Star shaped polymers: a model for the conformation and its concentration dependence. J Physiol Paris 43:531–538

    CAS  Google Scholar 

  12. Herfurth C, Laschewsky A, Noirez L, Lospichl B, Gradzielski M (2016) Thermoresponsive (star) block copolymers from one-pot sequential RAFT polymerizations and their self-assembly in aqueous solution. Polymer. 107:422–433

    CAS  Google Scholar 

  13. Zhang M, Shen W, Xiong Q, Wang H, Zhou Z, Chen W, Zhang Q (2015) Thermo-responsiveness and biocompatibility of star-shaped poly[2-(dimethylamino)ethyl methacrylate]-b-poly(sulfobetaine methacrylate) grafted on a b-cyclodextrin core. RSC Adv 5:28133–28140

    CAS  Google Scholar 

  14. Amirova AI, Dudkina MM, Tenkovtsev AV, Filippov AP (2015) Self-assembly of star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions. Colloid Polym Sci 293:239–248

    CAS  Google Scholar 

  15. Amirova A, Rodchenko S, Milenin S, Tatarinova E, Kurlykin M, Tenkovtsev A, Filippov A (2017) Influence of a hydrophobic core on thermoresponsive behavior of dendrimer-based star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions. J Polym Res 24:124

    Google Scholar 

  16. Amirova A, Tobolina A, Kirila T, Blokhin A, Razina A, Tenkovtsev A, Filippov A (2018) Influence of core configuration and arm structure on solution properties of new thermosensitive star-shaped poly(2-alkyl-2-oxazolines). Int J Polym Anal Chem 23:278–285

    CAS  Google Scholar 

  17. Kowalczuk A, Kronek J, Bosowska K, Trzebicka B, Dworak A (2011) Star poly(2-ethyl-2-oxazoline)s – synthesis and thermosensitivity. Polym Int 60:1001–1009

    CAS  Google Scholar 

  18. Lambermont-Thijs HML, Fijten MWM, Schubert US, Hoogenboom R (2011) Star-shaped poly(2-oxazoline)s by dendrimer endcapping. Aust J Chem 64:1026–1032

    CAS  Google Scholar 

  19. Wu Z, Liang H, Lu J (2010) Synthesis of poly(N-isopropylacrylamide)-poly(ethylene glycol) miktoarm star copolymers via RAFT polymerization and aldehyde-aminooxy click reaction and their thermoinduced micellization. Macromolecules. 43:5699–5705

    CAS  Google Scholar 

  20. Amirova A, Rodchenko S, Makhmudova Z, Cherkaev G, Milenin S, Tatarinova E, Kurlykin M, Tenkovtsev A, Filippov A (2017) Synthesis, characterization, and investigation of thermosensitive star-shaped poly(2-isopropyl-2-oxazolines) based on carbosilane dendrimers. Macromol Chem Phys 218:1600387

    Google Scholar 

  21. Iatridi Z, Tsitsilianis C (2011) pH responsive self assemblies from an An-core-(B-b-C)n heteroarm star block terpolymer bearing oppositely charged segments. ChemComm. 47:5560–5562

    CAS  Google Scholar 

  22. Salzinger S, Huber S, Jaksch S, Busch P, Jordan R, Papadakis CM (2012) Aggregation behavior of thermo-responsive poly(2-oxazoline)s at the cloud point investigated by FCS and SANS. Colloid Polym Sci 290:385–400

    CAS  Google Scholar 

  23. Krumm C, Fik CP, Meuris M, Dropalla GJ, Geltenpoth H, Sickmann A, Tiller JC (2012) Well-defined amphiphilic poly(2-oxazoline) ABA-triblock copolymers and their aggregation behavior in aqueous solution. Macromol Rapid Commun 33:1677–1682

    CAS  PubMed  Google Scholar 

  24. Xu J, Luo S, Shi W, Liu S (2006) Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir. 22:989–997

    CAS  PubMed  Google Scholar 

  25. Kyriakos K, Aravopoulou D, Augsbach L, Sapper J, Ottinger S, Psylla C, Aghebat Rafat A, Benitez-Montoya CA, Miasnikova A, Di Z, Laschewsky A, Müller-Buschbaum P, Kyritsis A, Papadakis CM (2014) Novel thermoresponsive block copolymers having different architectures – structural, rheological, thermal, and dielectric investigations. Colloid Polym Sci 292:1757–1774

    CAS  Google Scholar 

  26. Steinschulte AA, Schulte B, Rütten S, Eckert T, Okuda J, Möller M, Schneider S, Borisov OV, Plamper FA (2014) Effects of architecture on the stability of thermosensitive unimolecular micelles. Phys Chem Chem Phys 16:4917–4932

    CAS  PubMed  Google Scholar 

  27. Trinh LTT, Lambermont-Thijs HML, Schubert US, Hoogenboom R, Kjøniksen AL (2012) Thermoresponsive poly(2-oxazoline) block copolymers exhibiting two cloud points: complex multistep assembly behavior. Macromolecules. 45:4337–4345

    CAS  Google Scholar 

  28. Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275–1343

    CAS  Google Scholar 

  29. Weber C, Hoogenboom R, Schubert US (2012) Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog Polym Sci 37:686–714

    CAS  Google Scholar 

  30. Steinschulte AA, Schulte B, Erberich M, Borisov OV, Plamper FA (2012) Unimolecular Janus micelles by microenvironment-induced, internal complexation. ACS Macro Lett 1:504–507

    CAS  Google Scholar 

  31. Picos-Corrales LA, Licea-Claverie A, Cornejo-Bravo JM, Schwarz S, Arndt KF (2012) Well-defined N-Isopropylacrylamide dual-sensitive copolymers with LCST ≈38 °C in different architectures: linear. Block Star Polymers Macromol Chem Phys 213:301–304

    CAS  Google Scholar 

  32. Jin RH (2002) Controlled location of porphyrin in aqueous micelles self-assembled from porphyrin centered amphiphilic star poly(oxazolines). Adv Mater 14:889–892

    CAS  Google Scholar 

  33. Jin RH (2003) Self-assembly of porphyrin-centered amphiphilic star block copolymer into polymeric vesicular aggregates. Macromol Chem Phys 204:403–409

    CAS  Google Scholar 

  34. Katsumoto Y, Tsuchiizu A, Qiu X, Winnik FM (2012) Dissecting the mechanism of the heat-induced phase separation and crystallization of poly(2-isopropyl-2-oxazoline) in water through vibrational spectroscopy and molecular orbital calculations. Macromolecules. 45:3531–3541

    CAS  Google Scholar 

  35. Amirova A, Golub O, Kirila T, Razina A, Tenkovtsev A, Filippov A (2017) Influence of arm length on aqueous solution behavior of thermosensitive poly(2-isopropyl-2-oxazoline) stars. Colloid Polym Sci 295:117–124

    CAS  Google Scholar 

  36. Smirnova AV, Kirila TU, Kurlykin MP, Tenkovtsev AV, Filippov AP (2017) Behavior of aqueous solutions of polymer star with block copolymer poly(2-ethyl-2-oxazoline) and poly(2-isopropyl-2-oxazoline) arms. Int J Polym Anal Chem 22:677–684

    CAS  Google Scholar 

  37. Kirila TU, Kurlykin MP, Ten’kovtsev AV, Filippov AP (2018) Behavior of a thermosensitive star-shaped polymer with polyethyloxazoline-block-polyisopropyloxazoline copolymer arms. Polym Sci Ser A 60:249–259

    CAS  Google Scholar 

  38. Ono Y, Shikata T (2006) Hydration and dynamic behavior of poly(N-isopropylacrylamide)s in aqueous solution: a sharp phase transition at the lower critical solution temperature. J Am Chem Soc 128:10030–10031

    CAS  PubMed  Google Scholar 

  39. Glassner M, Vergaelen M, Hoogenboom R (2018) Poly(2-oxazoline)s: a comprehensive overview of polymer structures and their physical properties. Polym Int 67:32–45

    CAS  Google Scholar 

  40. Aseyev V, Tenhu H, Winnik FM (2011) Non-ionic Thermoresponsive polymers in water. In: Müller AHE, Borisov O (eds) Self organized nanostructures of amphiphilic block copolymers II2nd edn. Springer, Berlin, Heidelberg, pp 29–89

    Google Scholar 

  41. Lee SJ, Han BR, Park SY, Han DK, Kim SC (2005) Sol–gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA–PEG block copolymer aqueous solution. J Polym Sci A 44:888–899

    Google Scholar 

  42. Meyer M, Antonietti M, Schlaad H (2007) Unexpected thermal characteristics of aqueous solutions of poly(2-isopropyl-2-oxazoline). Soft Matter 3:430–431

    CAS  Google Scholar 

  43. Demirel AL, Meyer M, Schlaad H (2007) Formation of polyamide nanofibers by directional crystallization in aqueous solution. Angew Chem Int Ed 46:8622–8778

    CAS  Google Scholar 

  44. Diehl C, Cernoch P, Zenke I, Runge H, Pitschke R, Hartmann J, Tiersch B, Schlaad H (2010) Mechanistic study of the phase separation/crystallization process of poly(2-isopropyl-2-oxazoline) in hot water. Soft Matter 6:3784–3788

    CAS  Google Scholar 

  45. Dvornic P, Owen M (2009) Silicon-containing dendritic polymers. Springer, Luxembourg

    Google Scholar 

Download references

Funding

This work was supported by the State Program for Support of Leading Scientific Schools (grant no. 14.W03.31.0022). All carbosilane dendrimers were synthesized as part of work supported by the Russian Foundation for Basic Research (RFBR) (project No 18-29-04037 мк).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serafim Rodchenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodchenko, S., Amirova, A., Milenin, S. et al. Self-organization of thermosensitive star-shaped poly(2-isopropyl-2-oxazolines) influenced by arm number and generation of carbosilane dendrimer core in aqueous solutions. Colloid Polym Sci 298, 355–363 (2020). https://doi.org/10.1007/s00396-020-04619-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04619-2

Keywords

Navigation