Skip to main content
Log in

Magnetic-stimuli rheological response of soft-magnetic manganese ferrite nanoparticle suspension

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The hydrothermal fabrication of crystalline manganese ferrite (MnFe2O4) nanoparticles and their application as a magnetorheological (MR) fluid dispersed in an insulating oil are described herein. The morphology and crystal structure of the MnFe2O4 nanoparticles are revealed by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. In addition, with a relatively high saturation magnetization of the MnFe2O4 particles, their typical MR behavior is demonstrated by rheometric steady shear and dynamic oscillation tests under an applied magnetic field. Moreover, the flow and yield stress curves for the MnFe2O4 nanoparticle-based MR fluid are shown to conform to the Herschel–Bulkley model with a slope of 1.5. Finally, under the same magnetic field strength, the dynamic yield stress is shown to be higher than the elastic yield stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thakur S, Karak N (2014) Multi-stimuli responsive smart elastomeric hyperbranched polyurethane/reduced graphene oxide nanocomposites. J Mater Chem A 2:14867–14875

    Article  CAS  Google Scholar 

  2. Plachy T, Masar M, Mrlik M, Machovsky M, Machovska Z, Kutalkova E, Kuritka I (2019) Switching between negative and positive electrorheological effect of g-C3N4 by copper ions doping. Adv Powder Technol 30:714–723

    Article  CAS  Google Scholar 

  3. Fameau A-L, Salonen A (2014) Effect of particles and aggregated structures on the foam stability and aging. C R Phys 15:748–760

    Article  CAS  Google Scholar 

  4. Sun Y, Huang Y, Wang M, Wu J, Yuan S, Ding J, Peng Y, Pu H, Xie S, Luo J (2020) Design, testing and modelling of a tuneable GER fluid damper under shear mode. Smart Mater Struct 29:085011

    Article  CAS  Google Scholar 

  5. Bica I, Anitas EM, Chirigiu L, Daniela C, Chirigiu LME (2018) Hybrid magnetorheological suspension: effects of magnetic field on the relative dielectric permittivity and viscosity. Colloid Polym Sci 296:1373–1378

    Article  CAS  Google Scholar 

  6. Cheng HB, Zuo L, Song JH, Zhang QJ, Wereley NM (2010) Magnetorheology and sedimentation behavior of an aqueous suspension of surface modified carbonyl iron particles. J Appl Phys 107:09B507

    Article  Google Scholar 

  7. Kim JW, Kim SG, Choi HJ, Suh MS, Shin MJ, Jhon MS (2001) Synthesis and electrorheological characterization of polyaniline and Na+-montmorillonite clay nanocomposite. Int J Mod Phys B 15:657–664

    Article  CAS  Google Scholar 

  8. Sutrisno J, Purwanto A, Mazlan SA (2015) Recent progress on magnetorheological solids: materials, fabrication, testing, and applications. Adv Eng Mater 17:563–597

    Article  Google Scholar 

  9. Ahamed R, Ferdaus MM, Li Y (2016) Advancement in energy harvesting magneto-rheological fluid damper: a review. Korea-Aust Rheol J 28:355–379

    Article  Google Scholar 

  10. Ginder JM, Davis LC, Elie LD (1966) Rheology of magnetorheological fluids: models and measurements. Int J Mod Phys B 10:3293–3303

    Article  Google Scholar 

  11. Anupama AV, Kumaran V, Sahoo B (2018) Magneto-mechanical response of additive-free Fe-based magnetorheological fluids: role of particle shape and magnetic properties. Mater Res Express 5:1–11

    Article  Google Scholar 

  12. Rwei S, Lee H, Yoo S, Wang L, Lin J (2005) Magnetorheological characteristics of aqueous suspensions that contain Fe3O4 nanoparticles. Colloid Polym Sci 283:1253–1258

    Article  CAS  Google Scholar 

  13. Agustín-Serrano R, Donado F, Rubio-Rosas E (2013) Magnetorheological fluid based on submicrometric silica-coated magnetite particles under an oscillatory magnetic field. J Magn Magn Mater 335:149–158

    Article  Google Scholar 

  14. Zhou T, Zhang T, Zeng Y, Zhang R, Lou Z, Deng J, Wang L (2018) Structure-driven efficient NiFe2O4 materials for ultra-fast response electronic sensing platform. Sensors Actuators B Chem 255:1436–1444

    Article  CAS  Google Scholar 

  15. Cao Y, Qin H, Niu X, Jia D (2016) Simple solid-state chemical synthesis and gas-sensing properties of spinel ferrite materials with different morphologies. Ceram Int 42:10697–10703

    Article  CAS  Google Scholar 

  16. Yadav RS, Kuřitka I, Havlica J, Hnatko M, Alexander C, Masilko J, Kalina L, Hajdúchová M, Rusnak J, Enev V (2018) Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1−xZnxFe2O4 (x= 0.0, 0.5) spinel ferrite nanoparticles. J Magn Magn Mater 447:48–57

    Article  Google Scholar 

  17. Anupama AV, Kumaran V, Sahoo B (2019) Effect of magnetic dipolar interactions and size dispersity on the origin of steady state magnetomechanical response in bidisperse Mn–Zn ferrite spherical particle based magnetorheological fluids. New J Chem 43:9969–9979

    Article  CAS  Google Scholar 

  18. Anupama AV, Kumaran V, Sahoo B (2018) Magnetorheological fluids containing rod-shaped lithium–zinc ferrite particles: the steady-state shear response. Soft Matter 14:5407–5419

    Article  CAS  PubMed  Google Scholar 

  19. Anupama AV, Kumaran V, Sahoo B (2018) Steady-shear magnetorheological response of fluids containing solution-combustion-synthesized Ni-Zn ferrite powder. Adv Powder Technol 29:2188–2193

    Article  CAS  Google Scholar 

  20. Anupama AV, Kumaran V, Sahoo B (2018) Application of Ni-Zn ferrite powders with polydisperse spherical particles in magnetorheological fluids. Powder Technol 338:190–196

    Article  CAS  Google Scholar 

  21. Kumar R, Anupama AV, Kumaran V, Sahoo B (2018) Effect of solvents on the structure and magnetic properties of pyrolysis derived carbon globules embedded with iron/iron carbide nanoparticles and their applications in magnetorheological fluids. Nano-Struct Nano-Objects 16:167–173

    Article  CAS  Google Scholar 

  22. Gao CY, Kim MW, Bae DH, Dong YZ, Piao SH, Choi HJ (2017) Fe3O4 nanoparticle-embedded polystyrene composite particles fabricated via a Shirasu porous glass membrane technique and their magnetorheology. Polymer 125:21–29

    Article  CAS  Google Scholar 

  23. Anupama AV, Kumaran V, Sahoo B (2018) Application of monodisperse Fe3O4 submicrospheres in magnetorheological fluids. J Ind Eng Chem 67:347–357

    Article  CAS  Google Scholar 

  24. Anupama AV, Khopka VB, Kumaran V, Sahoo B (2018) Magnetic field dependent steady-state shear response of Fe3O4 micro-octahedron based magnetorheological fluids. Phys Chem Chem Phys 20:20247–20256

    Article  CAS  PubMed  Google Scholar 

  25. Kuncser V, Schinteie G, Sahoo B, Keune W, Bica D, Vekas L, Filoti G (2006) Magnetic interactions in water based ferrofluids studied by Mossbauer spectroscopy. J Phys Condens Matter 19:016205

    Article  Google Scholar 

  26. Kurtinaitienė M, Mažeika K, Ramanavičius S, Pakštas V, Jagminas A (2016) Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles. Adv Nano Res 4:1–14

    Article  Google Scholar 

  27. Akhtar MJ, Younas M (2012) Structural and transport properties of nanocrystalline MnFe2O4 synthesized by co-precipitation method. Solid State Sci 14:1536–1542

    Article  CAS  Google Scholar 

  28. Iranmanesh P, Saeednia S, Mehran M, Dafeh SR (2017) Modified structural and magnetic properties of nanocrystalline MnFe2O4 by pH in capping agent free co-precipitation method. J Magn Magn Mater 425:31–36

    Article  CAS  Google Scholar 

  29. Bhandare SV, Kumar R, Anupama AV, Choudhary HK, Jali VM, Sahoo B (2017) Annealing temperature dependent structural and magnetic properties of MnFe2O4 nanoparticles grown by sol-gel auto-combustion method. J Magn Magn Mater 433:29–34

    Article  CAS  Google Scholar 

  30. Anupama AV, Kumar R, Choudhary HK, Jagadeesha Angadi V, Somashekarappa HM, Rudraswamy B, Sahoo B (2020) Gamma-irradiation induced modifications in structural and magnetic properties of nanocrystalline Mn0.5Zn0.5 SmxFe2-xO4 ceramics. Radiat Phys Chem 166:108506

    Article  CAS  Google Scholar 

  31. Angadi VJ, Anupama AV, Kumar R, Choudhary HK, Matteppanavar S, Somashekarappa HM, Rudraswamy B, Sahoo B (2017) Composition dependent structural and morphological modifications in nanocrystalline Mn-Zn ferrites induced by high energy γ-irradiation. Mater Chem Phys 199:313–321

    Article  CAS  Google Scholar 

  32. Khilari S, Pandit S, Varanasi JL, Das D, Pradhan D (2015) Bifunctional manganese ferrite/polyaniline hybrid as electrode material for enhanced energy recovery in microbial fuel cell. ACS Appl Mater Interfaces 7:20657–20666

    Article  CAS  PubMed  Google Scholar 

  33. Ma J, Hou Y, Ji T, Zhao J, Zhang S (2016) Preparation of MnFe2O4 nanoparticles via a facile water-glycol solvothermal approach. Synth React Inorg M 46:1513–1518

    Article  CAS  Google Scholar 

  34. Hosseini SH, Moghimi A, Moloudi M (2014) Magnetic, conductive, and microwave absorption properties of polythiophene nanofibers layered on MnFe2O4/Fe3O4 core–shell structures. Mater Sci Semicond Process 24:272–277

    Article  CAS  Google Scholar 

  35. Ruíz-Baltazar A, Esparza R, Rosas G, Ramiro Perez-Campos R (2015) Effect of the surfactant on the growth and oxidation of iron nanoparticles. J Nanomater 2015:240948

    Article  Google Scholar 

  36. Gandha K, Mohapatra J, Hossain MK, Elkins K, Poudyal N, Rajeshwarb K, Liu JP (2016) Mesoporous iron oxide nanowires: synthesis, magnetic and photocatalytic properties. RSC Adv 66:90537–90546

    Article  Google Scholar 

  37. Kuncser V, Schinteie G, Sahoo B, Keune W, Bica D, Vekas L, Filoti G (2006) Magnetic interactions in water based ferrofluids studied by Mo ̈ssbauer spectroscopy. J Phys Condens Matter 19:016205

    Article  Google Scholar 

  38. Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat Nanotechnol 6:534

    Article  CAS  PubMed  Google Scholar 

  39. Mrlík M, Sedlacik M, Pavlínek V, Peer P, Filip P, Sáha P (2013) Magnetorheology of carbonyl iron particles coated with polypyrrole ribbons: the steady shear study. J Phys Conf Ser 412:012016

    Article  Google Scholar 

  40. Chand M, Shankar A, Jain K, Pant R (2014) Improved properties of bidispersed magnetorheological fluids. RSC Adv 4:53960–53966

    CAS  Google Scholar 

  41. Kwon SH, Na SM, Flatau AB, Choi HJ (2020) Fe-Ga alloy based magnetorheological fluid and its viscoelastic characteristics. J Ind Eng Chem 82:433–438

    Article  CAS  Google Scholar 

  42. Chotpattananont D, Sirivat A, Jamieson AM (2006) Creep and recovery behaviors of a polythiophene-based electrorheological fluid. Polymer 47:3568–3575

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Research Foundation of Korea (2018R1A4A1025169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Jin Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C.Y., Baek, E., You, C.Y. et al. Magnetic-stimuli rheological response of soft-magnetic manganese ferrite nanoparticle suspension. Colloid Polym Sci 299, 865–872 (2021). https://doi.org/10.1007/s00396-021-04808-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04808-7

Keywords

Navigation