Skip to main content
Log in

Morphology transition of polyion complex (PIC) micelles with carboxybetaine as a shell induced at different block ratios and their pH-responsivity

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, we investigated the morphology transition of polyion complex (PIC) micelles with the change in block ratio and pH-responsivity of PIC micelles or vesicles using entirely ionic diblock copolymers composed of carboxybetaine and ionic blocks. We used 2-((2-(methacryloylo-xy)ethyl)dimethylammonio)acetate (PGLBT) as carboxybetaine, poly(sodium styrenesulfonate) (PSSNa) as the anionic polymer, and poly[3-(methacrylamido)propyltrimethylammonium chlorid-e] (PMAPTAC) as the cationic polymer. The effect of pH on the PGLBT homopolymer and the PGLBT-containing diblock copolymer was examined by DLS, ELS, and transmittance, and a rapid change of state was observed between pH 4 and 2. At this pH, the carboxyl group of PGLBT was protonated to form a hydrogen bond in the molecule. Furthermore, at a lower pH, diblock copolymer behaved like a cationic polymer. The formation behavior of PIC micelles at different block ratios in the diblock copolymers was investigated by DLS, SLS, TEM, and AFM. PIC vesicles formed when the block ratio of ionic blocks to the PGLBT block was equal or larger (the content of PGLBT was 52% or less). On the other hand, PIC micelles were formed when the block ratio of PGLBT to ionic blocks was larger (the content of PGLBT was 68% or more). The pH-responsivity of PIC micelles was different from that of PIC vesicles. The size of PIC vesicles decreased by lowering pH and increased when the below pH 3. The behavior was the same as the change of state of PGLBT homopolymer with the change in pH. However, the size of PIC micelles increased by lowering pH from pH 6 to 3 and decreased at pH below pH 3. The PGLBT, which became the shell, changed its state with the change in pH and affected the aggregation number of micelles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kobayashi M, Terayama Y, Kikuchi M, Takahara A (2013) Chain dimensions and surface characterization of superhydrophilic polymer brushes with zwitterion side groups. Soft Matter 9:5138–5148

    Article  CAS  Google Scholar 

  2. Leng C, Han X, Shao Q, Zhu Y, Li Y, Jiang S, Chen Z (2014) In situ probing of the surface hydration of zwitterionic polymer brushes: structural and environmental effects. J Phys Chem C 118:15840–15845

    Article  CAS  Google Scholar 

  3. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Single conical nanopores displaying pH- tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes. J Am Chem Soc 131:2070–2071

    Article  CAS  PubMed  Google Scholar 

  4. Ningrum EO, Ohfuka Y, Gotoh T, Sakohara S (2015) Effects of specific anions on the relationship between the ion-adsorption properties of sulfobetaine gel and its swelling behavior. Polymer 59:144–154

    Article  CAS  Google Scholar 

  5. Peng X, Liu H, Yin Q, Wu J, Chen P, Zhang G, Liu G, Wu C, Xie Y (2016) A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat Commun 7:11782–11789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ning J, Li G, Haraguchi K (2013) Synthesis of highly stretchable, mechanically tough, zwitterionic sulfobetaine nanocomposite gels with controlled thermosensitivities. Macromolecules 46:5317–5328

    Article  CAS  Google Scholar 

  7. John JV, Uthaman S, Augustine R, Lekshmi KM, Park IK, Kim I (2017) Biomimetic pH/redox dual stimuli-responsive zwitterionic polymer block poly(L-histidine) micelles for intracellular delivery of doxorubicin into tumor cells. Polym Chem 55:2061–2070

    Article  CAS  Google Scholar 

  8. Kim Y, Binauld S, Stenzel MH (2012) Zwitterionic guanidine-based oligomeeres mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles. Biomacromol 13:3418–3426

    Article  CAS  Google Scholar 

  9. Jiang J, Li J, Zhou B, Niu C, Wang W, Wu W, Liang J (2019) Fabrication of polymer micelles with zwitterionic shell and biodegradable core for reductively responsive release of doxorubicin. Polymers 11:1019–1031

    Article  CAS  PubMed Central  Google Scholar 

  10. Kim D, Sakamoto H, Matsuoka H, Saruwatari Y (2020) Complex formation of sulfobetaine surfactant and ionic polymers and their stimuli responsivity. Langmuir 36:12990–13000

    Article  CAS  PubMed  Google Scholar 

  11. Zhu J, Qing Y, Wang T, Zhu R, Wei J, Tao Q, Yuan P, He H (2011) Preparation and characterization of zwitterionic surfactant-modified montmorillonites. J Colloid Interface Sci 360:386–392

    Article  CAS  PubMed  Google Scholar 

  12. Casu A, Cabrini E, Dona A, Falqui A, Diaz-Fernandez Y, Milanese C, Taglietti A, Pallavicini P (2012) Controlled synthesis of gold nanostars by using a zwitterionic surfactant. Chem Eur J 18:9381–9390

    Article  CAS  PubMed  Google Scholar 

  13. Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N (1998) Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 39:323–330

    Article  CAS  PubMed  Google Scholar 

  14. Sun Q, Su Y, Ma X, Wang Y, Jiang Z (2006) Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer. J Membr Sci 285:299–305

    Article  CAS  Google Scholar 

  15. Hadidi M, Zydney AL (2014) Fouling behavior of zwitterionic membranes: impact of electrostatic and hydrophobic interactions. J Membr Sci 452:97–103

    Article  CAS  Google Scholar 

  16. Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J (2017) Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1:371–382

    Article  CAS  Google Scholar 

  17. Kim H, Nicholas HH, Kang JH, Bisnoff P, Sundararajan S, Thompson T, Barnes M, Hayward RC, Emrick T (2020) Polymer ZWITTERIONS FOR STABILIZATION of CsPbBr 3 perovskite nanoparticles and nanocomposite films. Angew Chem Int Ed 59:10802–10806

    Article  CAS  Google Scholar 

  18. Wang D, Huang L, Chen Q, Hu L, Zeng F, Zhou X, Zhang L, Liu C, Wang X, Yan L, Xu B (2020) A dual function-enabled novel zwitterion to stabilize a Pb-I framework and passivate defects for highly efficient inverted planar perovskite solar cells. Chem Commun 56:6929–6932

    Article  CAS  Google Scholar 

  19. Ladenheim H, Morawetz H (1957) A new type of polyampholyte: poly(4-vinyl pyridine betaine). J Polym Sci 26:251–254

    Article  CAS  Google Scholar 

  20. Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4190

    Article  CAS  PubMed  Google Scholar 

  21. Laschewsky A (2014) Structures and synthesis of zwitterionic polymers. Polymer 6:1544–1601

    Article  Google Scholar 

  22. Thomas DB, Vasilieva YA, Armentrout RS, McCormick CL (2003) Synthesis, characterization, and aqueous solution behavior of electrolyte- and pH-responsive carboxybetaine-containing cyclocopolymers. Macromolecules 36:9710–9715

    Article  CAS  Google Scholar 

  23. Huynh V, Jesmer AH, Shoaib MM, Wylie RG (2019) Influence of hydrophobic cross-linkers on carboxybetaine copolymer stimuli response and hydrogel biological properties. Langmuir 35:1631–1641

    Article  CAS  PubMed  Google Scholar 

  24. Hildebrand V, Laschewsky A, Zehm D (2014) On the hydrophilicity of polyzwitterion poly (N, N-dimethyl-N-(3-(methacylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions. J Biomater Sci Polym Ed 25:1602–1618

    Article  CAS  PubMed  Google Scholar 

  25. Niskanen J, Tenhu H (2017) How to manipulate the upper critical solution temperature (USCT)? Polym Chem 8:220–232

    Article  CAS  Google Scholar 

  26. Iso K, Okada T (2000) Evaluation of electrostatic potential induced by anion-dominated partition into zwitterionic micelles and origin of selectivity in anion uptake. Langmuir 16:9199–9204

    Article  CAS  Google Scholar 

  27. Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A (2008) Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths. Langmuir 24:8772–8778

    Article  CAS  PubMed  Google Scholar 

  28. Yang J, Chen H, Xiao S, Shen M, Chen F, Fan P, Zhong M, Zheng J (2015) Salt-Responsive zwitterionic polymer brushes with tunable friction and antifouling properties. Langmuir 31:9125–9133

    Article  CAS  PubMed  Google Scholar 

  29. Ni L, Meng J, Geise GM, Zhang Y, Zhou J (2015) Water and salt transport properties of zwitterionic polymers films. J Membr Sci 491:73–81

    Article  CAS  Google Scholar 

  30. Harada A, Kataoka K (1995) Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules 28:5294–5299

    Article  CAS  Google Scholar 

  31. Harada A, Kataoka K (1999) Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science 283:65–67

    Article  CAS  PubMed  Google Scholar 

  32. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2(72):1525–1568

    Article  Google Scholar 

  33. Smart T, Lomas H, Massignani M, Flores-Merino MV, Perez LR, Battaglia G (2008) Block copolymer nanostructures. Nano Today 3:38–46

    Article  CAS  Google Scholar 

  34. Chuanoi S, Anraku Y, Hori M, Kishimura A, Kataoka K (2014) Fabrication of polyion complex vesicles with enhanced salt and temperature resistance and their potential applications as enzymatic nanoreactors. Biomacromol 15:2389–2397

    Article  CAS  Google Scholar 

  35. Zhang J, Zhou Y, Zhu Z, Ge Z, Liu S (2008) Polyion complex micelles possessing thermoresponsive coronas and their covalent core stabilization via “click” chemistry. Macromolecules 41:1444–1454

    Article  CAS  Google Scholar 

  36. Shovsky A, Varga I, Makuska R, Claesson PM (2009) Formation and stability of water-soluble, molecular polyelectrolyte complexes: effects of charge density, mixing ratio, and polyelectrolyte concentration. Langmuir 25:6113–6121

    Article  CAS  PubMed  Google Scholar 

  37. Lindhoud S, Norde W, Stuart MAC (2009) Reversibility and relaxation behavior of polyelectrolyte complex micelle formation. J Phys Chem B 113:5431–5439

    Article  CAS  PubMed  Google Scholar 

  38. Kim D, Matsuoka H, Saruwatari Y (2020) Formation of sulfobetaine-containing entirely ionic PIC (polyion complex) micelles and their temperature responsivity. Langmuir 36:10130–10137

    Article  CAS  PubMed  Google Scholar 

  39. Kim D, Matsuoka H, Yusa S, Saruwatari Y (2020) Collapse behavior of polyion complex (PIC) micelles upon salt addition and reforming behavior by dialysis and its temperature responsivity. Langmuir 36:15485–15492

    Article  CAS  PubMed  Google Scholar 

  40. Jones RAL (2004) Soft condensed matter. Oxford University Press

    Google Scholar 

  41. Yin H, Zhou Z, Huang J, Zhen R, Zhang Y (2003) Temperature-induced micelle to vesicle transition in the sodium dodecylsulfate/dodecyltriethylammonium bromide system. Angew Chem Int Ed 42:2188–2191

    Article  CAS  Google Scholar 

  42. Moughton AO, O’Reilly RK (2010) Thermally induced micelle to vesicle morphology transition for a charged chain end diblock copolymer. Chem Commun 46:1091–1093

    Article  CAS  Google Scholar 

  43. Ohno S, Ishihara K, Yusa S (2016) Formation of polyion complex (PIC) micelles and vesicles with anionic pH-responsive unimer micelles and cationic diblock copolymers in water. Langmuir 32:3945–3953

    Article  CAS  PubMed  Google Scholar 

  44. Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30:267–277

    Article  CAS  PubMed  Google Scholar 

  45. Hattori G, Takenaka M, Sawamoto M, Terashima T (2018) Nanostructured materials via the pendant self-assembly of amphiphilic crystalline random copolymers. J Am Chem Soc 140:8376–8379

    Article  CAS  PubMed  Google Scholar 

  46. Gonzalez Y, Nakanishi H, Stjerndahl M, Kaler EW (2005) Influence of pH on the micelle-to-vesicle transition in aqueous mixtures of sodium dodecyl benzenesulfonate with histidine. J Phys Chem B 109:11675–11682

    Article  CAS  PubMed  Google Scholar 

  47. Takahashi R, Sato T, Terao K, Yusa S (2016) Reversible vesicle-spherical micelle transition in a polyion complex micellar system induced by changing the mixing ratio of copolymer components. Macromolecules 49:3091–3099

    Article  CAS  Google Scholar 

  48. Mitsukami Y, Donovan MS, Lowe AB, McCormick CL (2001) Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules 34:2248–2256

    Article  CAS  Google Scholar 

  49. Kim D, Matsuoka H, Saruwatari Y (2019) Synthesis and stimuli responsivity of diblock copolymers composed of sulfobetaine and ionic blocks: influence of the block ratio. Langmuir 35:1590–1597

    Article  CAS  PubMed  Google Scholar 

  50. Smoluchowski MV (1916) Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Phys Z 17:557–585

    Google Scholar 

  51. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann der Physik 322:549–560

    Article  Google Scholar 

  52. Zimm BH (1948) The scattering of light and the radial distribution function of high polymer solutions. J Chem Phys 16:1093–1099

    Article  CAS  Google Scholar 

  53. Kharlampieva E, Pristinski D, Sukhishvili SA (2007) Hydrogen-bonded multilayers of poly(carboxybetaine)s. Macromolecules 40:6967–6972

    Article  CAS  Google Scholar 

  54. Zou Q, Habermann-Rottinghaus SM, Murphy KP (1998) Urea effects on protein stability: hydrogen bonding and the hydrophobic effect. Proteins 31:107–115

    Article  CAS  PubMed  Google Scholar 

  55. Sagle LB, Zhang Y, Litosh VA, Chen X, Cho Y, Cremer PS (2009) Investigating the hydrogen-bonding model of urea denaturation. J Am Chem Soc 131:9304–9310

    Article  CAS  PubMed  Google Scholar 

  56. Jones AOF, Leech CK, Mclntyre GJ, Wilson CC, Thomas LH (2014) Engineering short, strong hydrogen bonds in urea di-carboxylic acid complexes. CrystEngComm 16:8177–8184

    Article  CAS  Google Scholar 

  57. Patterson JP, Robin MP, Chassenieux C, Colombani O, O’Reilly RK (2014) The analysis of solution self-assembled polymeric nanomaterials. Chem Soc Rev 43:2412–2425

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Sasakawa Scientific Research Grant (2020–3002 and 2021–3006) from the Japan Science Society and Mizuho Foundation for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Matsuoka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

396_2021_4921_MOESM1_ESM.pdf

Supplementary file1 The online version contains supplementary material available at DOI: Estimation of the Ð (Mw/Mn) of PGLBT-containing polymers and results of DLS, ELS, and SLS; additional figures. (PDF 2306 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Honda, H., Matsuoka, H. et al. Morphology transition of polyion complex (PIC) micelles with carboxybetaine as a shell induced at different block ratios and their pH-responsivity. Colloid Polym Sci 300, 125–138 (2022). https://doi.org/10.1007/s00396-021-04921-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04921-7

Keywords

Navigation