Skip to main content
Log in

Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The non-linear viscoelasticity of concentrated solutions and glasses of soft starlike micelles has been studied by large-amplitude oscillatory shear (LAOS). The non-linear response has been analysed using current schemes of Fourier transform (FT) rheology, and its character has been determined by the phase of the third harmonic contribution to the stress. The limitations of FT rheology and related analysis methods are discussed, and an alternative method is presented that takes into account all the higher harmonics. This method reveals a strain-hardening character of intracycle non-linearities at large strain amplitudes for all volume fractions. We also show that, although the relation of LAOS with steady shear measurements works qualitatively, due to inherent limitations of LAOS, steady shear data cannot be reproduced quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Note that there is an alternative interpretation based on the phase difference of the nth harmonic with respect to the fundamental of the stress (Neidhofer et al. 2003), which has been used in previous studies (Le Grand and Petekidis 2008).

  2. All data have been shifted so that at t = 0 the strain is zero and the shear rate is positive.

References

  • Allgaier J, Poppe A, Willner L, Richter D (1997) Synthesis and characterization of poly[1,4-isoprene-b-(ethylene oxide)] and poly[ethylene-co-propylene-b-(ethylene oxide)] block copolymers. Macromolecules 30(6):1582–1586

    Article  CAS  Google Scholar 

  • Ballesta P, Besseling R, Isa L, Petekidis G, Poon WCK (2008) Slip and flow of hard-sphere colloidal glasses. Phys Rev Lett 101(25). doi:10.1103/PhysRevLett.101.258301

  • Ballesta P, Petekidis G, Isa L, Poon WCK, Besseling R (2012) Wall slip and flow of concentrated hard-sphere colloidal suspensions. J Rheol 5:1005–1037. doi:10.1122/1.4719775

    Article  Google Scholar 

  • Brader JM, Siebenbuerger M, Ballauff M, Reinheimer K, Wilhelm M, Frey SJ, Weysser F, Fuchs M (2010) Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and fourier transform rheology experiments. Phys Rev E 82(6, Part 1):061401. doi:10.1103/PhysRevE.82.061401

    Article  CAS  Google Scholar 

  • Brambilla G, El Masri D, Pierno M, Berthier L, Cipelletti L, Petekidis G, Schofield AB (2009) Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition. Phys Rev Lett 102:085703. doi:10.1103/PhysRevLett.102.085703

    Article  CAS  Google Scholar 

  • Carrier V, Petekidis G (2009) Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles. J Rheol 53(2):245–273. doi:10.1122/1.3045803

    Article  CAS  Google Scholar 

  • Cho K, Hyun K, Ahn K, Lee S (2005) A geometrical interpretation of large amplitude oscillatory shear response. J Rheol 49(3):747–758. doi:10.1122/1.1895801

    Article  CAS  Google Scholar 

  • Christopoulou C, Petekidis G, Erwin B, Cloitre M, Vlassopoulos D (2009) Ageing and yield behaviour in model soft colloidal glasses. Phil Trans R Soc A 367(1909):5051–5071. doi:10.1098/rsta.2009.0166

    Article  CAS  Google Scholar 

  • Cloitre M, Borrega R, Monti F, Leibler L (2003) Glassy dynamics and flow properties of soft colloidal pastes. Phys Rev Lett 90(6):068303. doi:10.1103/PhysRevLett.90.068303

    Article  Google Scholar 

  • Craciun L, Carreau P, Heuzey MC, van de Ven T, Moan M (2003) Rheological properties of concentrated latex suspensions of poly(styrene-butadiene). Rheol Acta 42:410–420

    Article  CAS  Google Scholar 

  • Daniel C, Hamley I, Wilhelm M, Mingvanish W (2001) Non-linear rheology of a face-centred cubic phase in a diblock copolymer gel. Rheol Acta 40(1):39–48

    Article  CAS  Google Scholar 

  • Dealy J, Wissbrun K (1999) Melt rheology and its role in plastics processing: theory and applications, Kluwer, Dordrecht

  • Derec C, Ducouret G, Ajdari A, Lequeux F (2003) Aging and nonlinear rheology in suspensions of polyethylene oxide-protected silica particles. Phys Rev E 67(6, Part 1):061403. doi:10.1103/PhysRevE.67.061403

    Article  Google Scholar 

  • Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox-Merz rule extended—a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35(4):647–685. doi:10.1122/1.550184

    Article  CAS  Google Scholar 

  • Ewoldt RH (2013) Defining nonlinear rheological material functions for oscillatory shear. J Rheol 57(1):177–195. doi:10.1122/1.4764498

    Article  CAS  Google Scholar 

  • Ewoldt RH, McKinley GH (2010) On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves. Rheol Acta 49(2):213–219. doi:10.1007/s00397-009-0408-2

    Article  CAS  Google Scholar 

  • Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458. doi:10.1122/1.2970095

    Article  CAS  Google Scholar 

  • Ewoldt RH, Winter P, Maxey J, McKinley GH (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49(2):191–212. doi:10.1007/s00397-009-0403-7

    Article  CAS  Google Scholar 

  • Gadala-Maria F, Acrivos A (1980) Shear-induced structure in a concentrated suspension of solid spheres. J Rheol 24(6):799–814

    Article  CAS  Google Scholar 

  • Giacomin AJ, Bird RB, Johnson LM, Mix AW (2011) Large-amplitude oscillatory shear flow from the corotational Maxwell model. J Non-Newtonian Fluid Mech 166(19–20):1081–1099. doi:10.1016/j.jnnfm.2011.04.002

    Article  CAS  Google Scholar 

  • Helgeson ME, Wagner NJ, Vlassopoulos D (2007) Viscoelasticity and shear melting of colloidal star polymer glasses. J Rheol 51(2):297–316. doi:10.1122/1.2433935

    Article  CAS  Google Scholar 

  • Heymann L, Peukert S, Aksel N (2002) Investigation of the solid-liquid transition of highly concentrated suspensions in oscillatory amplitude sweeps. J Rheol 46(1):93–112

    Article  CAS  Google Scholar 

  • Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36(12):1697–1753

    Article  CAS  Google Scholar 

  • Hyun K, Kim W, Park SJ, Wilhelm M (2013) Numerical simulation results of the nonlinear coefficient Q from FT-rheology using a single mode pom-pom model. J Rheol 57(1):1–25. doi:10.1122/1.4754444

    Article  CAS  Google Scholar 

  • Kapnistos M, Vlassopoulos D, Fytas G, Mortensen K, Fleischer G, Roovers J (2000) Reversible thermal gelation in soft spheres. Phys Rev Lett 85(19):4072–4075

    Article  CAS  Google Scholar 

  • Koumakis N (2011) Mechanisms of yielding and flow in colloidal glasses, crystals and gels. PhD thesis, University of Crete

  • Koumakis N, Petekidis G (2011) Two step yielding in attractive colloids: transition from gels to attractive glasses. Soft Matter 7(6):2456–2470. doi:10.1039/c0sm00957a

    Article  CAS  Google Scholar 

  • Koumakis N, Laurati M, Egelhaaf SU, Brady JF, Petekidis G (2012a) Yielding of hard-sphere glasses during start-up shear. Phys Rev Lett 108:098303. doi:10.1103/PhysRevLett.108.098303

    Article  CAS  Google Scholar 

  • Koumakis N, Pamvouxoglou A, Poulos AS, Petekidis G (2012b) Direct comparison of the rheology of model hard and soft particle glasses. Soft Matter 8:4271–4284. doi:10.1039/C2SM07113D

    Article  CAS  Google Scholar 

  • Laeuger J, Stettin H (2010) Differences between stress and strain control in the non-linear behaviour of complex fluids. Rheol Acta 49(9):909–930. doi:10.1007/s00397-010-0450-0

    Article  CAS  Google Scholar 

  • Langela M, Wiesner U, Spiess H, Wilhelm M (2002) Microphase reorientation in block copolymer melts as detected via FT rheology and 2D SAXS. Macromolecules 35(8):3198–3204

    Article  CAS  Google Scholar 

  • Larson R (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Laurati M, Stellbrink J, Lund R, Willner L , Richter D, Zaccarelli E (2005) Starlike micelles with starlike interactions: a quantitative evaluation of structure factors and phase diagram. Phys Rev Lett 94(19):195504. doi:10.1103/PhysRevLett.94.195504

    Article  CAS  Google Scholar 

  • Laurati M, Stellbrink J, Lund R, Willner L, Zaccarelli E, Richter D (2007) Asymmetric poly(ethylene-alt-propylene)-poly(ethylene oxide) micelles: a system with starlike morphology and interactions. Phys Rev E 76:041503. doi:10.1103/PhysRevE.76.041503

    Article  CAS  Google Scholar 

  • Laurati M, Egelhaaf SU, Petekidis G (2011) Nonlinear rheology of colloidal gels with intermediate volume fraction. J Rheol 55(3):673–706. doi:10.1122/1.3571554

    Article  CAS  Google Scholar 

  • Le Grand A, Petekidis G (2008) Effects of particle softness on the rheology and yielding of colloidal glasses. Rheol Acta 47(5–6):579–590. doi:10.1007/s00397-007-0254-z

    Article  CAS  Google Scholar 

  • Liddel P, Boger D (1996) Yield stress measurements with the vane. J Non-Newtonian Fluid Mech 63(2–3):235–261

    Article  Google Scholar 

  • Lund R, Willner L, Stellbrink J, Lindner P, Richter D (2006) Logarithmic chain-exchange kinetics of diblock copolymer micelles. Phys Rev Lett 96(6):068302. doi:10.1103/8PhysRevLett.96.068302

    Article  Google Scholar 

  • Mason TG, Weitz DA (1995) Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Phys Rev Lett 75(14):2770–2773. doi:10.1103/PhysRevLett.75.2770

    Article  CAS  Google Scholar 

  • Mason TG, Bibette J, Weitz DA (1996) Yielding and flow of monodisperse emulsions. J Colloid Interface Sci 179(2):439–448. doi:10.1006/jcis.1996.0235

    Article  CAS  Google Scholar 

  • Mason T, Lacasse M, Grest G, Levine D, Bibette J, Weitz D (1997) Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Phys Rev E 56(3, Part B):3150–3166

    Article  CAS  Google Scholar 

  • Matsumoto T, Segawa Y, Warashina Y, Onogi S (1973) Nonlinear behavior of viscoelastic materials. II. The method of analysis and temperature dependence of nonlinear viscoelastic functions. J Rheol 17:47

    Article  CAS  Google Scholar 

  • Mewis J, Meire C (1984) Yielding in weakly flocculated systems. In: Mena B, García-Rejón A, Rangel-Nafaille C (eds) Advances in rheology, vol 2. Elsevier, New York

    Google Scholar 

  • Mewis J, Wagner NJ (2009) Current trends in suspension rheology. J Non-Newtonian Fluid Mech 157(3, Sp. Iss. SI):147–150. doi:10.1016/j.jnnfm.2008.11.004

    Article  CAS  Google Scholar 

  • Miyazaki K, Wyss HM, Weitz DA, Reichman DR (2006) Nonlinear viscoelasticity of metastable complex fluids. Europhys Lett 75(6):915–921. doi:10.1209/epl/i2006-10203-9

    Article  CAS  Google Scholar 

  • Moller P, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2(4):274–283

    Article  CAS  Google Scholar 

  • Neidhofer T, Wilhelm M, Debbaut B (2003) Fourier-transform rheology experiments and finite-element simulations on linear polystyrenesolutions. J Rheol 47(6):1351–1371. doi:10.1122/1.1608954

    Article  CAS  Google Scholar 

  • Nicolai T, Benyahia L (2005) Shear flow and large strain oscillation of dense polymeric micelle suspension. Macromolecules 38(23):9794–9802. doi:10.1021/ma0514267

    Article  CAS  Google Scholar 

  • Onogi S, Matsumoto T (1981) Rheological properties of polymer solutions and melts containing suspended particles. Polym Eng Rev 1:45–87

    CAS  Google Scholar 

  • Onogi S, Masuda T, Matsumoto T (1970) Non-linear behavior of viscoelastic materials. I. Disperse systems of polystyrene solution and carbon black. J Rheol 14:275

    Article  CAS  Google Scholar 

  • Ozon F, Petekidis G, Vlassopoulos D (2006) Signatures of nonergodicity transition in a soft colloidal system. Ind Eng Chem Res 45(21):6946–6952. doi:10.1021/ie051373h

    Article  CAS  Google Scholar 

  • Petekidis G, Moussaid A, Pusey P (2002) Rearrangements in hard-sphere glasses under oscillatory shear strain. Phys Rev E 66(5):051402. doi:10.1103/PhysRevE.66.051402

    Article  CAS  Google Scholar 

  • Petekidis G, Vlassopoulos D, Pusey P (2003) Yielding and flow of colloidal glasses. Faraday Discuss 123:287–302. doi:10.1039/b207343a

    Article  CAS  Google Scholar 

  • Petekidis G, Vlassopoulos D, Pusey PN (2004) Yielding and flow of sheared colloidal glasses. J Phys-Condens Mat 16:S3955

    Article  CAS  Google Scholar 

  • Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Pusey PN, Poon WCK (2006) Yielding of colloidal glasses. Europhys Lett 75(4):624–630. doi:10.1209/epl/i2006-10156-y

    Article  CAS  Google Scholar 

  • Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Poon WCK, Pusey PN (2008) Yielding behavior of repulsion- and attraction-dominated colloidal glasses. J Rheol 52:649

    Article  CAS  Google Scholar 

  • Philippoff W (1966) Vibrational measurements with large amplitudes. J Rheol 10: 317

    Article  CAS  Google Scholar 

  • Pusey P, Van Megen W (1987) Observation of a glass transition in suspensions of spherical colloidal particles. Phys Rev Lett 59(18):2083–2086

    Article  CAS  Google Scholar 

  • Renou F, Stellbrink J, Petekidis G (2010) Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS). J Rheol 54:1219

    Article  CAS  Google Scholar 

  • Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011) A sequence of physical processes determined and quantified in LAOS: application to a yield stress fluid. J Rheol 55(2):435–458

    Article  CAS  Google Scholar 

  • Schlatter G, Fleuary G, Muller R (2005) Fourier transform rheology of branched polyethylene: experiments and models for assessing the macromolecular architecture . Macromolecules 38(15):6492–6503. doi:10.1021/ma0505530

    Article  CAS  Google Scholar 

  • Shikata T, Pearson D (1994) Viscoelastic behavior of concentrated spherical suspensions. J Rheol 38(3):601–616

    Article  Google Scholar 

  • Sollich P (1998) Rheological constitutive equation for a model of soft glassy materials. Phys Rev E 58(1):738–759

    Article  CAS  Google Scholar 

  • Stellbrink J, Rother G, Laurati M, Lund R, Willner L, Richter D (2004) Poly(ethylene-alt-propylene)-poly(ethylene oxide) diblock copolymer micelles: a colloidal model system with tunable softness. J Phys Condens Matter 16(38, Sp. Iss. SI):S3821–S3834. doi:10.1088/0953-8984/16/38/004

    Article  CAS  Google Scholar 

  • Stokes J, Telford J (2004) Measuring the yield behaviour of structured fluids. J Non-Newtonian Fluid Mech 124(1–3):137–146

    Article  CAS  Google Scholar 

  • van Megen W, Mortensen T, Williams S, Muller J (1998) Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition. Phys Rev E 58(5, Part B):6073–6085

    Article  Google Scholar 

  • Wilhelm M, Maring D, Spiess H (1998) Fourier-transform rheology. Rheol Acta 37(4):399–405

    Article  CAS  Google Scholar 

  • Wilhelm M, Reinheimer P, Ortseifer M (1999) High sensitivity Fourier-transform rheology. Rheol Acta 38(4):349–356

    Article  CAS  Google Scholar 

  • Wilhelm M, Reinheimer P, Ortseifer M, Neidhofer T, Spiess H (2000) The crossover between linear and non-linear mechanical behaviour in polymer solutions as detected by Fourier-transform rheology. Rheol Acta 39(3):241–246

    Article  CAS  Google Scholar 

  • Zausch J, Horbach J, Laurati M, Egelhaaf SU, Brader JM, Voigtmann T, Fuchs M (2008) From equilibrium to steady state: the transient dynamics of colloidal liquids under shear. J Phys Condens Matter 20(40):404210. doi:10.1088/0953-8984/20/40/404210

    Article  Google Scholar 

Download references

Acknowledgments

We thank Nikos Koumakis for the valuable discussions. We acknowledge Lutz Willner for the synthesis of the PEP-PEO block copolymer. This work has been supported by the EU funding through NoE ‘Softcomp’ and NMP SMALL ‘Nanodirect’. J.S. acknowledges DFG for the support via SFB-TR6 and EU project ‘ESMI Infrastructure FP7 - 262348’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas S. Poulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulos, A.S., Stellbrink, J. & Petekidis, G. Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear. Rheol Acta 52, 785–800 (2013). https://doi.org/10.1007/s00397-013-0703-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0703-9

Keywords

Navigation