Skip to main content
Log in

Boundary layer viscosity of CNT-doped liquid crystals: effects of phase behavior

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Carbon nanotube (CNT)-doped liquid crystals (LCs) have attracted intensive research studies as prospective materials in optic display devices, microfluidic sensors, and lubricants due to their unique molecular structures and properties. In this paper, the interaction between the doped CNTs and the hosting 4-cyano-4\(^{\prime }\)-pentylbiphenyl (5CB) molecules (in both nematic and isotropic phases) was investigated and we focused on the boundary layer rheological properties of the CNT-doped 5CB under external electric field. The experiments were performed by using a quartz crystal microbalance (for boundary layer viscosity investigation) and a rheometer (for bulk viscosity measurement). The results indicate that the bulk viscosity of the CNT-doped 5CB presents an obvious electroviscous effect in its nematic phase while no electroviscous effect in its isotropic phase. Additionally, we found that the boundary layer viscosity of the CNT-doped 5CB demonstrated significant electroviscous effects both in its nematic phase and isotropic phase. The enhanced electroviscous effects on the boundary layer viscosity of CNT-doped 5CB can be attributed to the highly ordered structures of LC molecules and CNTs on the substrate under external electric field. The unique properties of the boundary layer rheology of CNT-doped 5CB LC were further discussed in view of the ordering of LC molecules induced by the electric field, the polarity of CNTs, and the aligning interaction between CNTs and LC molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bandey HL, Martin SJ, Cernosek RW (1999) Modeling the responses of thickness-shear mode resonators under various loading conditions. Anal Chem 71(11):2205–2214

    Article  CAS  Google Scholar 

  • Chen HY, Lee W (2006) Suppression of field screening in nematic liquid crystals by carbon nanotubes. Appl Phys Lett 88(22):222105

    Article  Google Scholar 

  • Chen HY, Lee W, Clark NA (2007) Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension. Appl Phys Lett 90(3):033510

    Article  Google Scholar 

  • Deschamps J, Trusler J, Jackson G (2008) Vapor pressure and density of thermotropic liquid crystals: MBBA, 5CB, and novel fluorinated mesogens. J Phys Chem B 112(13):3918–3926

    Article  CAS  Google Scholar 

  • Dierking I, Scalia G, Morales P, LeClere D (2004) Aligning and reorienting carbon nanotubes with nematic liquid crystals. Adv Mater 16(11):865–869

    Article  CAS  Google Scholar 

  • Dierking I, Scalia G, Morales P (2005) Liquid crystal-carbon nanotube dispersions. J Appl Phys 97(4):044309

    Article  Google Scholar 

  • Jeon SY, Shin SH, Jeong SJ, Lee SH, Jeong SH, Lee YH, Choi HC, Kim KJ (2007) Effects of carbon nanotubes on electro-optical characteristics of liquid crystal cell driven by in-plane field. Appl Phys Lett 90(12):121901

    Article  Google Scholar 

  • Jiang WQ, Yu B, Liu WM, Hao JC (2007) Carbon nanotubes incorporated within lyotropic hexagonal liquid crystal formed in room-temperature ionic liquids. Langmuir 23(16):8549–8553

    Article  CAS  Google Scholar 

  • Jiao MZ, Ge ZB, Song Q, Wu ST (2008) Alignment layer effects on thin liquid crystal cells. Appl Phys Lett 92(6):061102

    Article  Google Scholar 

  • Kanazawa KK, Gordon JG (1985) Frequency of a quartz microbalance in contact with liquid. Anal Chem 57(8):1770–1771

    Article  CAS  Google Scholar 

  • Kuksenok OV, Ruhwandl RW, Shiyanovskii SV, Terentjev EM (1996) Director structure around a colloid particle suspended in a nematic liquid crystal. Phys Rev E 54(5):5198–5203

    Article  CAS  Google Scholar 

  • Lagerwall J, Scalia G, Haluska M, Dettlaff-Weglikowska U, Roth S, Giesselmann F (2007) Nanotube alignment using lyotropic liquid crystals. Adv Mater 19(3):359–364

    Article  CAS  Google Scholar 

  • Lee W, Gau JS, Chen HY (2005) Electro-optical properties of planar nematic cells impregnated with carbon nanosolids. Appl Phys B-Lasers and Optics 81(2–3):171–175

    Article  CAS  Google Scholar 

  • Lee SH, Lee HK, Lee SE, Lee YH (2007) Effects of carbon nanotubes on physical properties of nematic liquid crystal and liquid crystal devices. Proc SPIE 6487:64870U

    Article  Google Scholar 

  • Lynch MD, Patrick DL (2002) Organizing carbon nanotubes with liquid crystals. Nano Lett 2(11):1197–1201

    Article  CAS  Google Scholar 

  • Mccoll JR, Shih CS (1972) Temperature dependence of orientational order in a nematic liquid crystal at constant molar volume. Phys Rev Lett 29(2):85–87

    Article  CAS  Google Scholar 

  • McHale G, Lucklum R, Newton MI, Cowen JA (2000) Influence of viscoelasticity and interfacial slip on acoustic wave sensors. J Appl Phys 88(12):7304–7312

    Article  CAS  Google Scholar 

  • Nakano K (2003) Scaling law on molecular orientation and effective viscosity of liquid-crystalline boundary films. Tribol Lettt 14(1):17–24

    Article  CAS  Google Scholar 

  • Nie XY, Lu RB, Xianyu HQ, Wu TX, Wu ST (2007) Anchoring energy and cell gap effects on liquid crystal response time. J Appl Phys 101:103110

    Article  Google Scholar 

  • Rahman M, Lee W (2009) Scientific duo of carbon nanotubes and nematic liquid crystals. J Phys D Appl Phys 42:063001

    Article  Google Scholar 

  • Sand PN, Dove DB, Ong HL, Jansen SA, Hoffmann R (1989) Role of surface bonding on liquid-crystal alignment at metal surfaces. Phys Rev A 39(5):2653–2658

    Article  Google Scholar 

  • Scalia G, Lagerwall J, Schymura S, Haluska M, Giesselmann F, Roth S (2007) Carbon nanotubes in liquid crystals as versatile functional materials. Phys Stat Sol (B) 244(11):4212–4217

    Article  CAS  Google Scholar 

  • Sharma D (2010) Non-isothermal kinetics of melting and nematic to isotropic phase transitions of 5CB liquid crystal. J Therm Anal Calorim 102(2):627–632

    Article  CAS  Google Scholar 

  • Thompson M, Kipling AL, Duncanhewitt WC, Rajakovic LV, Cavicvlasak BA (1991) Thickness shear mode acoustic wave sensors in the liquid phase—a review. Analyst 116(9):881–890

    Article  CAS  Google Scholar 

  • Voinova MV, Rodahl M, Jonson M, Kasemo B (1999) Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys Scripta 59(5):391–396

    Article  CAS  Google Scholar 

  • Weiss V, Thiruvengadathan R, Regev O (2006) Preparation and characterization of a carbon nanotube-lyotropic liquid crystal composite. Langmuir 22(3):854–856

    Article  CAS  Google Scholar 

  • Zhang XJ, Zhang XH, Xiong Y, Tian Y, Wen SZ (2012) Anti-electroviscous effect of near-surface 5CB liquid crystal and its boundary lubrication property. Rheol Acta 51(3):267–277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is sponsored by the National Basic Research Program of China (973, grant no. 2012CB934101) and the National Natural Science Foundation of China (grant nos. 50975154 and 51175282)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, X., Zhang, X., Guo, Y. et al. Boundary layer viscosity of CNT-doped liquid crystals: effects of phase behavior. Rheol Acta 52, 939–947 (2013). https://doi.org/10.1007/s00397-013-0732-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0732-4

Keywords

Navigation