Skip to main content
Log in

Tcf4 transgenic female mice display delayed adaptation in an auditory latent inhibition paradigm

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Schizophrenia (SZ) is a severe mental disorder affecting about 1 % of the human population. Patients show severe deficits in cognitive processing often characterized by an improper filtering of environmental stimuli. Independent genome-wide association studies confirmed a number of risk variants for SZ including several associated with the gene encoding the transcription factor 4 (TCF4). TCF4 is widely expressed in the central nervous system of mice and humans and seems to be important for brain development. Transgenic mice overexpressing murine Tcf4 (Tcf4tg) in the adult brain display cognitive impairments and sensorimotor gating disturbances. To address the question of whether increased Tcf4 gene dosage may affect cognitive flexibility in an auditory associative task, we tested latent inhibition (LI) in female Tcf4tg mice. LI is a widely accepted translational endophenotype of SZ and results from a maladaptive delay in switching a response to a previously unconditioned stimulus when this becomes conditioned. Using an Audiobox, we pre-exposed Tcf4tg mice and their wild-type littermates to either a 3- or a 12-kHz tone before conditioning them to a 12-kHz tone. Tcf4tg animals pre-exposed to a 12-kHz tone showed significantly delayed conditioning when the previously unconditioned tone became associated with an air puff. These results support findings that associate TCF4 dysfunction with cognitive inflexibility and improper filtering of sensory stimuli observed in SZ patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van Os J, Kapur S (2009) Schizophrenia. Lancet 374(9690):635–645

    Article  PubMed  Google Scholar 

  2. Insel TR (2010) Rethinking schizophrenia. Nature 468(7321):187–193

    Article  CAS  PubMed  Google Scholar 

  3. Tamminga CA, Holcomb HH (2005) Phenotype of schizophrenia: a review and formulation. Mol Psychiatry 10(1):27–39

    Article  CAS  PubMed  Google Scholar 

  4. Gray NS, Pickering AD, Hemsley DR, Dawling S, Gray JA (1992) Abolition of latent inhibition by a single 5 mg dose of d-amphetamine in man. Psychopharmacology 107(2–3):425–430

    Article  CAS  PubMed  Google Scholar 

  5. Vaitl D, Lipp OV (1997) Latent inhibition and autonomic responses: a psychophysiological approach. Behav Brain Res 88(1):85–93

    Article  CAS  PubMed  Google Scholar 

  6. Rascle C, Mazas O, Vaiva G, Tournant M, Raybois O, Goudemand M et al (2001) Clinical features of latent inhibition in schizophrenia. Schizophr Res 51(2–3):149–161

    Article  CAS  PubMed  Google Scholar 

  7. Vaitl D, Lipp O, Bauer U, Schüler G, Stark R, Zimmermann M et al (2002) Latent inhibition and schizophrenia: Pavlovian conditioning of autonomic responses. Schizophr Res 55(1–2):147–158

    Article  CAS  PubMed  Google Scholar 

  8. Weiner I, Arad M (2009) Using the pharmacology of latent inhibition to model domains of pathology in schizophrenia and their treatment. Behav Brain Res 204(2):369–386

    Article  CAS  PubMed  Google Scholar 

  9. Lubow RE, Moore AU (1959) Latent inhibition: the effect of nonreinforced pre-exposure to the conditional stimulus. J Comp Physiol Psychol. 52:415–419

    Article  CAS  PubMed  Google Scholar 

  10. Meyer F, Louilot A (2014) Consequences at adulthood of transient inactivation of the parahippocampal and prefrontal regions during early development: new insights from a disconnection animal model for schizophrenia. Front Behav Neurosci 7:118

    Article  PubMed  Google Scholar 

  11. Moser PC, Hitchcock JM, Lister S, Moran PM (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Brain Res Rev 33(2–3):275–307

    Article  CAS  PubMed  Google Scholar 

  12. Weiner I (2003) The, “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 169(3–4):257–297

    Article  CAS  PubMed  Google Scholar 

  13. Labrie V, Lipina T, Roder JC (2008) Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology 200(2):217–230

    Article  CAS  PubMed  Google Scholar 

  14. Lubow RE (2005) Construct validity of the animal latent inhibition model of selective attention deficits in schizophrenia. Schizophr Bull 31(1):139–153

    Article  CAS  PubMed  Google Scholar 

  15. Lubow RE, Gewirtz JC (1995) Latent inhibition in humans: data, theory, and implications for schizophrenia. Psychol Bull 117(1):87–103

    Article  CAS  PubMed  Google Scholar 

  16. Weiner I, Schnabel I, Lubow RE, Feldon J (1985) The effects of early handling on latent inhibition in male and female rats. Dev Psychobiol 18(4):291–297

    Article  CAS  PubMed  Google Scholar 

  17. Swerdlow NR, Braff DL, Hartston H, Perry W, Geyer MA (1996) Latent inhibition in schizophrenia. Schizophr Res 20(1–2):91–103

    Article  CAS  PubMed  Google Scholar 

  18. Williams JH, Wellman NA, Geaney DP, Cowen PJ, Feldon J, Rawlins JN (1998) Reduced latent inhibition in people with schizophrenia: an effect of psychosis or of its treatment. Br J Psychiatry J Ment Sci 172:243–249

    Article  CAS  Google Scholar 

  19. Swerdlow NR (2010) A cautionary note about latent inhibition in schizophrenia: are we ignoring relevant information? In: Latent inhibition [Internet]. Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511730184.019

  20. Solomon PR, Crider A, Winkelman JW, Turi A, Kamer RM, Kaplan LJ (1981) Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: relationship to schizophrenic attention disorder. Biol Psychiatry 16(6):519–537

    CAS  PubMed  Google Scholar 

  21. Weiner I, Lubow RE, Feldon J (1984) Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology 83(2):194–199

    Article  CAS  PubMed  Google Scholar 

  22. Weiner I, Lubow RE, Feldon J (1988) Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacol Biochem Behav 30(4):871–878

    Article  CAS  PubMed  Google Scholar 

  23. McGue M, Gottesman II (1991) The genetic epidemiology of schizophrenia and the design of linkage studies. Eur Arch Psychiatry Clin Neurosci 240(3):174–181

    Article  CAS  PubMed  Google Scholar 

  24. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al (2009) Common variants conferring risk of schizophrenia. Nature 460(7256):744–747

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li T, Li Z, Chen P, Zhao Q, Wang T, Huang K et al (2010) Common variants in major histocompatibility complex region and TCF4 gene are significantly associated with schizophrenia in Han Chinese. Biol Psychiatry 68(7):671–673

    Article  CAS  PubMed  Google Scholar 

  26. Steinberg S, de Jong S, Irish Schizophrenia Genomics Consortium, Andreassen OA, Werge T, Børglum AD et al (2011) Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet 20(20):4076–4081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schizophrenia Psychiatric Genome-Wide Association Study (2011) (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43(10):969–976

    Article  Google Scholar 

  28. Irish Schizophrenia Genomics Consortium and the Wellcome Trust Case Control Consortium 2 (2012) Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry 72(8):620–628

    Article  PubMed Central  Google Scholar 

  29. Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S et al (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45(10):1150–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wirgenes KV, Sønderby IE, Haukvik UK, Mattingsdal M, Tesli M, Athanasiu L et al (2012) TCF4 sequence variants and mRNA levels are associated with neurodevelopmental characteristics in psychotic disorders. Transl Psychiatry 2:e112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473(7346):221–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guella I, Sequeira A, Rollins B, Morgan L, Torri F, van Erp TGM et al (2013) Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex. J Psychiatr Res 47(9):1215–1221

    Article  PubMed  PubMed Central  Google Scholar 

  33. Umeda-Yano S, Hashimoto R, Yamamori H, Weickert CS, Yasuda Y, Ohi K et al (2014) Expression analysis of the genes identified in GWAS of the postmortem brain tissues from patients with schizophrenia. Neurosci Lett 7(568):12–16

    Article  Google Scholar 

  34. Amiel J, Rio M, de Pontual L, Redon R, Malan V, Boddaert N et al (2007) Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am J Hum Genet 80(5):988–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zweier C, Peippo MM, Hoyer J, Sousa S, Bottani A, Clayton-Smith J et al (2007) Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt–Hopkins syndrome). Am J Hum Genet 80(5):994–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Pontual L, Mathieu Y, Golzio C, Rio M, Malan V, Boddaert N et al (2009) Mutational, functional, and expression studies of the TCF4 gene in Pitt–Hopkins syndrome. Hum Mutat 30(4):669–676

    Article  PubMed  Google Scholar 

  37. Forrest M, Chapman RM, Doyle AM, Tinsley CL, Waite A, Blake DJ (2012) Functional analysis of TCF4 missense mutations that cause Pitt–Hopkins syndrome. Hum Mutat 33(12):1676–1686

    Article  CAS  PubMed  Google Scholar 

  38. Sweatt JD (2013) Pitt–Hopkins syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Exp Mol Med 45:e21

    Article  PubMed  PubMed Central  Google Scholar 

  39. Soosaar A, Chiaramello A, Zuber MX, Neuman T (1994) Expression of basic-helix-loop-helix transcription factor ME2 during brain development and in the regions of neuronal plasticity in the adult brain. Brain Res Mol Brain Res 25(1–2):176–180

    Article  CAS  PubMed  Google Scholar 

  40. Chiaramello A, Soosaar A, Neuman T, Zuber MX (1995) Differential expression and distinct DNA-binding specificity of ME1a and ME2 suggest a unique role during differentiation and neuronal plasticity. Brain Res Mol Brain Res 29(1):107–118

    Article  CAS  PubMed  Google Scholar 

  41. Brzózka MM, Radyushkin K, Wichert SP, Ehrenreich H, Rossner MJ (2010) Cognitive and sensorimotor gating impairments in transgenic mice overexpressing the schizophrenia susceptibility gene Tcf4 in the brain. Biol Psychiatry 68(1):33–40

    Article  PubMed  Google Scholar 

  42. Flora A, Garcia JJ, Thaller C, Zoghbi HY (2007) The E-protein Tcf4 interacts with Math1 to regulate differentiation of a specific subset of neuronal progenitors. Proc Natl Acad Sci USA 104(39):15382–15387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhuang Y, Cheng P, Weintraub H (1996) B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol Cell Biol 16(6):2898–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhuang Y, Barndt RJ, Pan L, Kelley R, Dai M (1998) Functional replacement of the mouse E2A gene with a human HEB cDNA. Mol Cell Biol 18(6):3340–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brzózka MM, Rossner MJ (2013) Deficits in trace fear memory in a mouse model of the schizophrenia risk gene TCF4. Behav Brain Res 15(237):348–356

    Article  Google Scholar 

  46. Quednow BB, Brzózka MM, Rossner MJ (2014) Transcription factor 4 (TCF4) and schizophrenia: integrating the animal and the human perspective. Cell Mol Life Sci CMLS 71(15):2815–2835

    Article  CAS  PubMed  Google Scholar 

  47. Falkai P, Rossner MJ, Schulze TG, Hasan A, Brzózka MM, Malchow B et al (2015) Kraepelin revisited: schizophrenia from degeneration to failed regeneration. Mol Psychiatry 20(6):671–676

    Article  CAS  PubMed  Google Scholar 

  48. de Hoz L, Nelken I (2014) Frequency tuning in the behaving mouse: different bandwidths for discrimination and generalization. PLoS ONE 9(3):e91676

    Article  PubMed  PubMed Central  Google Scholar 

  49. Brzózka MM. Untersuchungen zur Funktion des basischen Helix-Loop-Helix (bHLH)-Transkriptionsfaktors ME2 bei Lern- und Gedächtnisprozessen in der Maus. 2009 Aug 20 [cited 2015 Jun 19]. https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0006-AD69-F

  50. Morice R (1990) Cognitive inflexibility and pre-frontal dysfunction in schizophrenia and mania. Br J Psychiatry J Ment Sci 157:50–54

    Article  CAS  Google Scholar 

  51. Floresco SB, Zhang Y, Enomoto T (2009) Neural circuits subserving behavioral flexibility and their relevance to schizophrenia. Behav Brain Res 204(2):396–409

    Article  PubMed  Google Scholar 

  52. Levin HS, Eisenberg HM, Benton AL (1991) Frontal lobe function and dysfunction. Oxford University Press, Oxford, p 458

    Google Scholar 

  53. Crider A (1997) Perseveration in schizophrenia. Schizophr Bull 23(1):63–74

    Article  CAS  PubMed  Google Scholar 

  54. Schiller D, Weiner I (2004) Lesions to the basolateral amygdala and the orbitofrontal cortex but not to the medial prefrontal cortex produce an abnormally persistent latent inhibition in rats. Neuroscience 128(1):15–25

    Article  CAS  PubMed  Google Scholar 

  55. Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR (1995) Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology 122(1):35–43

    Article  CAS  PubMed  Google Scholar 

  56. Grecksch G, Bernstein HG, Becker A, Höllt V, Bogerts B (1999) Disruption of latent inhibition in rats with postnatal hippocampal lesions. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 20(6):525–532

    Article  CAS  Google Scholar 

  57. Feldon J, Avnimelech-Gigus N, Weiner I (1990) The effects of pre- and post-weaning rearing conditions on latent inhibition and partial reinforcement extinction effect in male rats. Behav Neural Biol 53(2):189–204

    Article  CAS  PubMed  Google Scholar 

  58. Shalev U, Feldon J, Weiner I (1998) Gender- and age-dependent differences in latent inhibition following pre-weaning non-handling: implications for a neurodevelopmental animal model of schizophrenia. Int J Dev Neurosci Off J Int Soc Dev Neurosci 16(3–4):279–288

    Article  CAS  Google Scholar 

  59. Bethus I, Lemaire V, Lhomme M, Goodall G (2005) Does prenatal stress affect latent inhibition? It depends on the gender. Behav Brain Res 158(2):331–338

    Article  PubMed  Google Scholar 

  60. Quinlan MG, Duncan A, Loiselle C, Graffe N, Brake WG (2010) Latent inhibition is affected by phase of estrous cycle in female rats. Brain Cogn 74(3):244–248

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by KFO241 (Klinische Forschergruppe 241) Grants RO 4076/1-1 and RO 4076/5-1 to M.J.R and M.M.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. J. Rossner or L. de Hoz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brzózka, M.M., Rossner, M.J. & de Hoz, L. Tcf4 transgenic female mice display delayed adaptation in an auditory latent inhibition paradigm. Eur Arch Psychiatry Clin Neurosci 266, 505–512 (2016). https://doi.org/10.1007/s00406-015-0643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-015-0643-8

Keywords

Navigation