Skip to main content
Log in

Fractionation of platinum, palladium, nickel, and copper in sulfide–arsenide systems at magmatic temperature

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Experimentally derived phase relations of arsenide in sulfide melt are presented to quantify the fractionation paths of As-bearing sulfide melts. When a natural sulfide melt reaches arsenide saturation, a separate Ni–PGE-rich arsenide melt exsolves. The arsenic saturation concentration in an Fe–Ni–Cu sulfide melt is between 0.5 and 1.5 wt%. The affinities of the chalcophile metals for an immiscible arsenide melt follow the order Pt > Pd > Ni ≫ Fe ≈ Cu. In natural systems, arsenide exsolution will be triggered by the activity of the nickel arsenide components dissolved in sulfide melt, Ni being the most common base metal with strong affinity to the Asn− anionic species. Arsenic may have a major effect on the fractionation paths of sulfide melts even if no separate arsenide phase forms. Arsenic, and probably many other chalcogens and metalloids in magmatic melts, may undergo associations with Pt and Pd well before discrete PGE minerals become stable phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almeida CM, Olivo GR, de Carvalho SG (2007) The Ni-Cu-PGE sulfide ores of the komatiite-hosted Fortalezo de Minas deposit, Brazil: evidence of hydrothermal remobilization. Can Mineral 45:751–773

    Article  Google Scholar 

  • Ames DE, Farrow CEG (2007) Metallogeny of the Sudbury mining camp, Ontario. In Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geol Assoc Canada Spec Publ 5: 329–350

  • Augé T, Salpeteur I, Bailly L, Mukherjee MM, Patra RN (2002) Magmatic and hydrothermal platinum-group minerals and base-metal sulfides in the Baula complex, India. Can Mineral 40:277–309

    Article  Google Scholar 

  • Augé T, Petrunov R, Baily L (2005) On the origin of the PGE mineralization in the elastite porphyry Cu–Au deposit, Bulgaria: comparison with the Baula-Nuasahi complex, India, and other alkaline PGE-rich porphyries. Can Mineral 43:1355–1372

    Article  Google Scholar 

  • Ballhaus C, Ryan CG (1995) Platinum-group elements in the Merensky Reef. I. PGE in solid solution in base metal sulfides and the down-temperature equilibration history of Merensky ores. Contrib Mineral Petrol 122:241–251

    Article  Google Scholar 

  • Ballhaus C, Ulmer P (1995) Platinum-group elements in the Merensky Reef: II. Experimental solubilities of platinum and palladium in Fe1−xS from 950 to 450°C under controlled fS2 and fH2. Geochim Cosmochim Acta 59:4881–4888

    Article  Google Scholar 

  • Ballhaus C, Tredoux M, Späth A (2001) Phase relations in the Fe–Ni–Cu–PGE–S system at magmatic temperature and application to the massive sulfide ores of the Sudbury igneous complex. J Petrol 42:1911–1926

    Article  Google Scholar 

  • Barin I (1995) Thermochemical data of pure substances I + II. VCH

  • Barkov AY, Laflamme JHG, Cabri LJ, Martin RF (2002) Platinum-group minerals from the Welgreen Ni–Cu–PGE deposit, Yukon, Canada. Can Mineral 40:651–669

    Article  Google Scholar 

  • Bockrath C, Ballhaus C, Holzheid A (2004) Stabilities of laurite RuS2 and monosulfide liquid solution at magmatic temperature. Chem Geol 208:265–271

    Article  Google Scholar 

  • Dare SAS, Barnes S-J, Prichard H, Fisher PC (2010) The timing and formation of platinum-group minerals from the Creighton Ni–Cu-platinum-group element sulfide deposit, Sudbury, Canada: early crystallization of PGE-rich sulfarsenides. Econ Geol 105:1071–1096

    Article  Google Scholar 

  • Fleet ME, Chryssoulis SL, Stone ES, Weisener CG (1993) Partitioning of platinum-group elements and Au in the Fe–Ni–Cu–S system: experiments on the fractional crystallization of sulfide melt. Contrib Mineral Petrol 115:36–44

    Article  Google Scholar 

  • Fonseca ROC, Campbell IH, O’Neill HSC, Fitzgerald JD (2008) Oxygen solubility and speciation in sulfide-rich mattes. Geochim Cosmochim Acta 72:2619–2635

    Article  Google Scholar 

  • Fonseca ROC, Campbell IH, O’Neill HSC, Allen CM (2009) Solubility of Pt in sulfide mattes: implications for the genesis of PGE-rich horizons in layered intrusions. Geochim Cosmochim Acta 73:5764–5777

    Article  Google Scholar 

  • Fonseca ROC, Mallmann G, O’Neill HSC, Campbell IH, Laurenz V (2011) Solubility of Os and Ir in sulfide melt: implications for Re/Os fractionation in the upper mantle. Earth Planet Sci Lett 311:339–350

    Article  Google Scholar 

  • Fonseca ROC, Laurenz V, Mallmann G, Luguet A, Hoehne N, Jochum KP (2012) New constraints on the genesis and long term stability of Os-rich alloys in the Earth’s mantle. Geochim Cosmochim Acta 87:227–242

    Article  Google Scholar 

  • Gervilla F, Leblanc M, Torres Ruiz J, Hachali PF (1996) Immiscibility between arsenide and sulfide melts: a mechanism for the concentration of noble metals. Can Mineral 34:485–502

    Google Scholar 

  • Gervilla F, Sanchez-Anguita A, Acevedo RD, Fenoll Hach-Ali P, Paniagua A (1997) Platinum-group element sulpharsenides and Pd bismutho-tellurides in the metamorphosed Ni–Cu deposit at Las Aguilas (Province of San Luis, Argentina). Mineral Mag 61:861–877

    Article  Google Scholar 

  • Gervilla F, Papunen H, Kojonen K, Johanson B (1998) Platinum, palladium, and gold-rich arsenide ores from the Kylmakoski Ni–Cu deposit (Vammala Nickel Belt, SW Finland). Mineral Petrol 64:163–185

    Article  Google Scholar 

  • Godel B, Barnes SJ, Barnes S-J, Maier D (2010) Platinum ore in three dimensions: insights from high-resolution X-ray computed tomography. Geology 38:1127–1130

    Article  Google Scholar 

  • Godel B, Gonzalez-Alvarez I, Barnes SJ, Barnes S-J, Parker P, Day J (2012) Sulfides and sulfarsenides from the rosie nickel prospect, Duketon Greenstone Belt, Western Australia. Econ Geol 107:275–294

    Article  Google Scholar 

  • Gritsenko YD, Spiridonov EM (2008) Maucherite from metamorphic-hydrothermal assemblages of the Noril’sk Ore Field. Geol Ore Depos 50:590–598

    Article  Google Scholar 

  • Hanley J (2007) The role of arsenic-rich melts and mineral phases in the development of high-grade Pt–Pd mineralization within komatiite-associated magmatic Ni–Cu sulfide horizons at Dundonald Beach South, Abitibi Subprovince, Ontario, Canada. Econ Geol 102:205–317

    Article  Google Scholar 

  • Helmy HM (2004) Cu–Ni–PGE mineralization in the Genina Gharbia mafic-ultramafic intrusion, Eastern Desert Egypt. Can Mineral 42:351–370

    Article  Google Scholar 

  • Helmy HM, Stumpfl EF, Kamel OA (1995) Platinum group minerals from the metamorphosed Abu Swayel Cu–Ni–PGE mineralization, South Eastern Desert Egypt. Econ Geol 90:2350–2360

    Article  Google Scholar 

  • Helmy HM, Ballhaus C, Berndt J, Bockrath C, Wohlgemuth-Ueberwasser C (2007) Formation of Pt, Pd and Ni tellurides: experiments in sulfide-telluride systems. Contrib Mineral Petrol 153:577–591

    Article  Google Scholar 

  • Helmy HM, Ballhaus C, Wohlgemuth-Ueberwasser C, Fonseca ROC, Laurenz V (2010) Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt—application to magmatic sulfide deposits. Geochim Cosmochim Acta 74:6174–6179

    Article  Google Scholar 

  • Helmy HM, Ballhaus C, Fonseca ROC, Wirth R, Nagel T, Tredoux M (2013) Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulfide melts. Nat Commun 4:2405. doi:10.1038/ncomms3405

    Article  Google Scholar 

  • Holwell DA, McDonald I (2007) Partitioning of platinum group elements in the Platreef at Overysel, northern Bushveld Complex: a combined PGM and LA ICP-MS study. Contrib Mineral Petrol 154:171–190

    Article  Google Scholar 

  • Hutchinson D, McDonald I (2008) Laser ablation ICP-MS study of platinum-group elements in sulfides from Platreef at Turfspruit, northern limb of the Bushveld Complex, South Africa. Mineral Depos 43:695–711

    Article  Google Scholar 

  • Laurenz V, Fonseca ROC, Ballhaus C, Jochum KP, Heuser A, Sylvester PJ (2013) The solubility of Pd and Ru in picritic melts: 2. The effect of sulfur. Geochim Cosmochim Acta 108:172–183

    Article  Google Scholar 

  • Leblanc M, Gervilla F, Jedwab J (1990) Noble metals segregation and fractionation in magmatic ores from Ronda and Beni Bousera lherzolite massifs (Spain, Morroco). Mineral Petrol 42:233–248

    Article  Google Scholar 

  • Lorand JP (1987) Sur I’origine mantellaire de I’arsenic dans les roches du manteau: exemple des pyroxénites à grenat du massif lherzolitique des Beni Bousera (Rif, Maroc). C R Acad Sci 305:383–386

    Google Scholar 

  • Makovicky E (2002) Ternary and quaternary phase systems with PGE, in Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum group elements. Canad Inst Mining Metall Petrol Spec Vol 54: 131–175

    Google Scholar 

  • Makovicky E, Karup-Møller S, Makovicky M, Rose-Hansen J (1990) Experimental studies on the phase systems Fe–Ni–Pd–S and Fe–Pt–Pd–As–S applied to PGE deposits. Mineral Petrol 42:307–319

    Article  Google Scholar 

  • Makovicky M, Makovicky E, Rose Hansen J (1992) The phase system Pt-Fe-As-S at 850°C and 470°C. N J Mineral Monatsh, 441–453

  • Malitch KN, Melcher F, Mühlhans H (2001) Palladium and gold mineralization in podiform chromitite at Kraubath, Austria. Mineral Petrol 73:247–277

    Article  Google Scholar 

  • Malitch KN, Thalhammer O, Knauf V, Melcher F (2003) Diversity of platinum-group mineral assemblages in banded and podiform chromitite from the Kraubath ultramafic massif, Austria: evidence for an ophiolitic transition zone? Mineral Depos 38:282–297

    Google Scholar 

  • McDonough WF, S–S Sun (1995) The composition of the Earth. Chem Geol 120:223–254

    Article  Google Scholar 

  • Naldrett AJ (1969) A portion of the system Fe–S–O between 900 and 1,080°C. J Petrol 10:171–201

    Article  Google Scholar 

  • Palme H, HStC O’Neill (2003) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) The mantle and core, treatise on geochemistry, Vol 2. Elsevier Pergamon, Oxford, pp 1–38

    Google Scholar 

  • Piña R, Gervilla F, Barnes S-J, Ortega L, Lunar R (2013) Partition coefficients of platinum group and chalcophile elements between arsenide and sulfide phases as determined in the Beni Bousera Cr–Ni mineralization (North Morocco). Econ Geol 108:935–951

    Article  Google Scholar 

  • Piña R, Gervilla F, Barnes S-J, Ortega L, Lunar R (2014) Liquid immiscibility between arsenide and sulfide melts: evidence from a LA-ICP-MS study in magmatic deposits from Serranía de Ronda (Spain). Mineral Deposita, in press

  • Power MR, Pirrie D, Jedwab J, Stanley CJ (2004) Platinum-group element mineralization in an As-rich magmatic sulfide system, Talnotry, southwest Scotland. Mineral Mag 68:395–411

    Article  Google Scholar 

  • Rudashevsky NS, Avdontsev ISN, Dneprovskaya MB (1992) Evolution of PGE mineralization in hortonolitic dunites of the Mooihoek and Onverwacht Pipes, Bushveld Complex. Mineral Petrol 47:37–54

    Article  Google Scholar 

  • Skinner BJ, Luce FD, Dill JA, Ellis DE, Hagan HA, Lewis DM, Odell DA, Sverjensky DA, Williams N (1976) Phase relations in ternary portions of the system Pt-Pd-Fe-As-S. Econ Geol 71:1469–1475

    Article  Google Scholar 

  • Szentpéteri K, Watkinson DH, Molnár F, Jones PC (2002) Platinum-group elements-Co–Ni–Fe sulfarsenides and mineral paragenesis in Cu–Ni-platinum-group element deposits, Copper Cliff North area, Sudbury, Canada. Econ Geol 97:1459–1470

    Google Scholar 

  • Tomkins AG (2010) Wetting facilitates late-stage segregation of precious metal–enriched sulfosalt melt in magmatic sulfide systems. Geology 38:951–954

    Article  Google Scholar 

  • Toulmin P, Barton PN Jr (1964) A thermodynamic study of pyrite and pyrrhotite. Geochim Cosmochim Acta 28:641–671

    Article  Google Scholar 

  • Tredoux M, Lindsay MN, Davies G, McDonald I (1995) The fractionation of platinum-group elements in magmatic systems, with the suggestion of a novel causal mechanism. S Afr J Geol 98:157–167

    Google Scholar 

  • Vermaak F, Hendriks LP (1976) A review of the mineralogy of the Merensky Reef with specific reference to new data on the precious metal mineralogy. Econ Geol 71:1244–1269

    Article  Google Scholar 

  • Verryn SMC, Merkle RKW (2002) The system PtS–PdS–NiS between 1200° and 700°C. Can Mineral 40:571–584

    Article  Google Scholar 

  • Wang YC, Prichard H, Zhou M-F, Fisher P (2008) Platinum-group minerals from the Jinbaoshan Pd–Pt deposit, SW China: evidence for magmatic origin and hydrothermal alteration. Mineral Depos 43:791–803

    Article  Google Scholar 

  • Wohlgemuth-Ueberwasser C, Ballhaus C, Berndt J (2007) Synthesis of PGE sulfide standards for laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Contrib Mineral Petrol 154:607–617

    Article  Google Scholar 

  • Wood M (2003) Arsenic in igneous systems: an experimental investigation: Unpubl BA Sc thesis Univ Toronto, 32 p

  • Yudovskaya M, Kinnaird J, Naldrett AJ, Mokhov AV, McDonald I, Peinke C (2011) Facies variation in PGE mineralization in the central Platreef of the Bushveld Complex, South Africa. Can Mineral 49:1349–1384

    Article  Google Scholar 

Download references

Acknowledgments

We thank Alex Heuser for setting up many analytical routines for the laser-ablation laboratory, Nils Jung for preparing the polished sections, and the workshop staff for maintaining the experimental laboratories in excellent condition. Frank Melcher contributed numerous unpublished analyses of PGE phases to Fig. 1. Ruben Piña and Fernando Gervilla generously shared unpublished analytical data from natural sulfide–arsenide deposits. These colleagues, as well as Marian Tredoux, Andrew Tomkins, and two anonymous journal reviewers commented on various aspects of this work and greatly helped improve the manuscript. Funding by the Alexander von Humboldt Society to HMH and by the DFG to CB and ROCF is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Helmy.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helmy, H.M., Ballhaus, C., Fonseca, R.O.C. et al. Fractionation of platinum, palladium, nickel, and copper in sulfide–arsenide systems at magmatic temperature. Contrib Mineral Petrol 166, 1725–1737 (2013). https://doi.org/10.1007/s00410-013-0951-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0951-9

Keywords

Navigation