Skip to main content
Log in

Petrogenesis and geodynamic significance of silicic volcanism in the western Trans-Mexican Volcanic Belt: role of gabbroic cumulates

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In the western Trans-Mexican Volcanic Belt voluminous silicic volcanism has been associated with the rifting of the Jalisco block from mainland Mexico. Rhyolitic volcanism started at 7.5 Ma after a major pulse of basaltic volcanism aged 11–8.5 Ma associated with slab detachment. This was followed by a second period, between 4.9 and 2.9 Ma, associated with rhyolitic domes and ignimbrite coexisting with basaltic volcanism. The similarity in rare earth element contents between basalts and rhyolites excludes a simple liquid line of descent. The low Ba and Sr contents and the ferroan character of the rhyolites suggest extensive fractional crystallization. Late Miocene–early Pliocene rhyolite Sr isotope values are only slightly more radiogenic than the basalts, whereas Nd isotope ratios are indistinguishable. We successfully modelled the 7.5–3 Ma silicic magmatism as a result of partial melting of crustal gabbroic complexes that we infer to have formed in the mid-lower crust due to the high-density Fe-enriched composition of the late Miocene basaltic volcanism. Slab rollback since ~7.5 Ma favoured decompression melting and arrival of additional mafic magmas that intruded in the lower crust. These basalts heated and melted the gabbroic complexes forming the silicic magmas, which subsequently underwent assimilation and fractional crystallization processes. The first silicic pulse was emplaced during a period of low tectonic activity. Extensional faulting since the Pliocene favours the eruption of both silicic magma and lesser amount of mafic lavas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Albrecht A, Goldstein SL (2000) Effects of basement composition and age on silicic magmas across an accreted terrane-Precambrian crust boundary, Sierra Madre Occidental, Mexico. J S Am Earth Sci 13:255–273. doi:10.1016/S0895-9811(00)00014-6

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539. doi:10.1093/petrology/egi084

    Article  Google Scholar 

  • Avanzinelli R, Boari E, Conticelli S, Francalanci L, Guarnieri L, Perini G, Petrone CM, Tommasini S, Ulivi M (2005) High precision Sr, Nd and Pb isotopic analyses using the new generation thermal ionisation mass spectrometer Thermo Finnigan Triton-Ti®. Per Mineral 74:147–166

    Google Scholar 

  • Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe–Ti oxides. Am Mineral 73:57–71

    Google Scholar 

  • Bindeman IN, Fu B, Kita NT, Valley JW (2008) Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons. J Petrol 49:163–193

    Article  Google Scholar 

  • Bottinga Y, Weill DF (1970) Densities of liquid silicate systems calculated from partial molar volume of oxides components. Am J Sci 269:169–182

    Article  Google Scholar 

  • Brown M (2007) Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences. J Geol Soc Lond 164:709–730

    Article  Google Scholar 

  • Bryan SE, Ferrari L (2013) Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. GSA Bull. doi:10.1130/B30820.1

    Google Scholar 

  • Bryan SE, Ferrari L, Reiners PW, Allen CM, Petrone CM, Ramos-Rosique A, Campbell IH (2008) New insights into crustal contributions to large-volume rhyolite generation in the mid-Tertiary Sierra Madre Occidental Province, Mexico, revealed by U–Pb geochronology. J Petrol 49:47–77. doi:10.1093/petrology/egm070

    Article  Google Scholar 

  • Cameron M, Bagby WC, Cameron KL (1980) Petrogenesis of voluminous mid-Tertiary ignimbrites of the Sierra Madre Occidental, Chihuahua, Mexico. Contrib Mineral Petrol 74:271–284. doi:10.1007/BF00371697

    Article  Google Scholar 

  • Cameron KL, Robinson JV, Niemeyer S, Nimz G, Kuents DC, Harmon RS, Bohlenk SR, Collerson KD (1992) Contrasting styles of pre-Cenozoic and mid-Tertiary crustal evolution in northern Mexico: evidence from deep crustal xenoliths from La Olivin. J Geophys Res: Solid Earth 97(B12):17353–17376. doi:10.1029/92JBO1493

    Article  Google Scholar 

  • Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106:129–141

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, Van Calsteren PW, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zeland) revealed by U–Th and U–Pb systematics in zircons. J Petrol 46:3–32. doi:10.1093/petrology/egh060

    Article  Google Scholar 

  • Christiansen EH, McCurry M (2008) Contrasting origins of Cenozoic silicic volcanic rocks from the western Cordillera of the United States. Bull Volcanol 70:251–267. doi:10.1007/s00445-007-0138-1

    Article  Google Scholar 

  • Christiansen EH, Burt DM, Sheridan MF, Wilson RT (1983) The petrogenesis of topaz rhyolites from the western United States. Contrib Mineral Petrol 83:16–30

    Article  Google Scholar 

  • Christiansen EH, Burt DM, Sheridan MF (1986) The geology and geochemistry of Cenozoic topaz rhyolites from the western United States. GSA Special Pap 205:82

    Google Scholar 

  • Christiansen EH, Haapala I, Hart GL (2007) Are Cenozoic topaz rhyolites the erupted equivalents of Proterozoic rapakivi granites? Examples from the western United States and Finland. Lithos 97:219–246. doi:10.1016/j.lithos.2007.01.010

    Article  Google Scholar 

  • DeMets C, Traylen S (2000) Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle. Tectonophysics 318(1–4):119–159

    Article  Google Scholar 

  • DePaolo DJ, Perry FV, Baldrige WS (1992) Crustal versus mantle sources of granitic magmas: a two parameters model based on Nd isotopic studies. Trans R Soc Edinb Earth Sci 83:439–444

    Article  Google Scholar 

  • Ewart A, Stripp JJ (1968) Petrogenesis of the volcanic rocks of the Central North Island, New Zeland, as indicated by a study of 87Sr/86Sr ratios, and Sr, Rb, K, U and Th abundances. Geochim Cosmochim Acta 32:699–736. doi:10.1016/0016-7037(68)90009-4

    Article  Google Scholar 

  • Ferrari L (2004) Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology 32:77–80. doi:10.1130/G19887.1

    Article  Google Scholar 

  • Ferrari L, Rosas J (2000) Late Miocene to Quaternary extension at the northern boundary of the Jalisco block, western Mexico: the Tepic-Zacoalco rift revised. GSA Special Pap 334(Chp 03):41–64

    Google Scholar 

  • Ferrari L, Pasquare G, Venegas S, Castillo D, Romero F (1994) Regional tectonic of western Mexico and its implications for the northern boundary of the Jalisco block. Geofis Int 33:139–151

    Google Scholar 

  • Ferrari L, Conticelli S, Vaggelli G, Petrone CM, Manetti P (2000) Late Miocene volcanism and intra-arc tectonics during the early development of the Trans-Mexican Volcanic Belt. Tectonophysics 318:161–185

    Article  Google Scholar 

  • Ferrari L, Petrone CM, Francalanci L (2001) Generation of oceanic-island basalt-type volcanism in the western Trans-Mexican Volcanic Belt by slab rollback, asthenosphere infiltration and variable flux-melting. Geology 6:507–510

    Article  Google Scholar 

  • Ferrari L, Petrone CM, Francalanci L, Tagami T, Eguchi M, Conticelli S, Manetti P, Venegas-Salgado S (2003) Geology of the San Pedro-Ceboruco graben, western Trans-Mexican Volcanic Belt. Rev Mex Cien Geol 20:165–181

    Google Scholar 

  • Ferrari L, Orozco-Esquivel T, Manea V, Manea M (2012) The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522–523:122–149. doi:10.1016/j.tecto.2011.09.018

    Article  Google Scholar 

  • Frey H, Lange RA, Hall CM, Delgado-Granados H (2004) Magma eruption rates constrained by 40Ar/39Ar chronology and GIS for the Ceboruco-San Pedro volcanic field, western Mexico. GSA Bull 116:259–276. doi:10.1130/B25321.1

    Article  Google Scholar 

  • Frey H, Lange R, Hall C, Delgado-Grandados H, Carmichael ISE (2007) A Pliocene ignimbrite flare-up along the Tepic-Zacoalco rift: evidence for the initial stages of rifting between the Jalisco Block (Mexico) and North America. GSA Bull 119:49–64

    Article  Google Scholar 

  • Frost CD, Frost BR (1997) Reduced rapakivi-type granites: the tholeiite connection. Geology 25(7):647–650

    Article  Google Scholar 

  • Frost BR, Frost CD (2008) A geochemical classification for feldspathic igneous rocks. J Petrol 49:1955–1969. doi:10.1093/petrology/egn054

    Article  Google Scholar 

  • Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52:39–53. doi:10.1093/petrology/egq070

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42(11):2033–2048

    Article  Google Scholar 

  • Ghiorso MS, Evans BW (2008) Thermodynamic of rhombohedral oxide solid solutions and a revision of the Fe–Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039

    Article  Google Scholar 

  • Gilbert C, Mahood G, Carmichael ISE (1985) Volcanic stratigraphy of the Guadalajara area, Mexico. Geofis Int 24:69–191

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin

    Book  Google Scholar 

  • Glazner AF (1994) Foundering of mafic plutons and density stratification of continental crust. Geology 22:435–438

    Article  Google Scholar 

  • Gomez-Tuena A, La Gatta AB, Langmuir CH, Goldstein SL, Ortega-Gutierrez F, Carrasco-Nunez G (2003) Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: mantle sources, slab contributions, and crustal contamination. Geochem Geophys Geosyst 4:8912. doi:10.1029/2003GC000524

    Article  Google Scholar 

  • Gomez-Tuena A, Orozco-Esquivel T, Ferrari L (2007) Igneous petrogenesis of the Trans-Mexican Volcanic Belt. In: Alaniz-Alvaers SA, Nieto-Samaniego AF (eds) Geology of Mexico: celebrating the Centenary of the Geological Society of Mexico. GSA Special Pap 422: 1–53 doi:10.1130/2007.2422(05)

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Muntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145:515–533

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Huppert HE, Sparks RS (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624. doi:10.1093/petrology/29.3.599

    Article  Google Scholar 

  • Irvine TN, Baragar WR (1971) A guide to chemical classification of common volcanic rocks. Can J Earth Sci 8:315–341

    Article  Google Scholar 

  • Jull M, Keleman PB (2001) On the condition for lower crustal convection instability. J Geophys Res 106:6423–6446

    Article  Google Scholar 

  • Karacik Z, Genç ŞC, Gülmez F (2013) Petrochemical features of Miocene volcanism around the Çubukludağ graben and Karaburun peninsula, western Turkey: implications for crustal melting related silicic volcanism. J Asian Earth Sci 73:199–217. doi:10.1016/jseaes.04.001

    Article  Google Scholar 

  • Kay RW, Kay AM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189. doi:10.1016/0040-1951(93)9025-U

    Article  Google Scholar 

  • Kimata M (1988) The crystal structure of non-stoichiometric Eu-anorthite: an explanation of the Eu-positive anomaly. Mineral Mag 52:257–262

    Article  Google Scholar 

  • Lange RA (1997) A revised model for the density and thermal expansivity of K2O–Na2O–CaO–MgO–Al2O3–SiO2 liquids from 700–1900 K: extension to crustal magmatic temperatures. Contrib Mineral Petrol 110:311–320

    Article  Google Scholar 

  • Lange RA, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. In: Nicholls J, Kelly JK (eds) Modern methods of igneous petrology. Min Soc Am Rev Mineral 24: 25E64

  • Lanphere MA, Cameron KL, Cameron M (1980) Sr isotopic geochemistry of voluminous rhyolitic ignimbrites and related rocks, Batopilas area, western Mexico. Nature 286:594–596. doi:10.1038/286594a0

    Article  Google Scholar 

  • Lewis-Kenedi CB, Lange RA, Hall CM, Delgado-Granados H (2005) The eruptive history of the Tequila volcanic field, western Mexico: ages, volumes, and relative proportions of lava types. Bull Volcanol 67:391–414. doi:10.1007/s00445-004-0377-3

    Article  Google Scholar 

  • Luhr JF (1997) Extensional tectonics and the diverse primitive volcanic rocks in the western Mexican Volcanic Belt. Can Min 35:473–500

    Google Scholar 

  • Macdonald R (1974) Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bull Volcanol 38:498–516

    Article  Google Scholar 

  • Mahood GA (1981) Chemical evolution of a Pleistocene rhyolitic center: Sierra La Primavera, Jalisco, Mexico. Contrib Mineral Petrol 77:129–149

    Article  Google Scholar 

  • Mahood GA, Halliday AN (1988) Generation of high-silica rhyolite: a Nd, Sr, and O isotopic study of Sierra La Primavera, Mexican Neovolcanic Belt. Contrib Mineral Petrol 100:183–191

    Article  Google Scholar 

  • Mahood GA, Gilbert CM, Carmichael ISE (1985) Peralkaline and metaluminous mixed-liquid ignimbrites of the Guadalajara region, Mexico. J Volcanol Geotherm Res 25:259–271

    Article  Google Scholar 

  • Maldonado-Sanchez G, Schaaf P (2005) Geochemical and isotope data from the Acatlán Volcanic Field, western Trans-Mexican Volcanic Belt: origin and evolution. Lithos 82:455–470. doi:10.1016/j.lithos.2004.09.030

    Article  Google Scholar 

  • Manea V, Manea M (2011) Flat-slab thermal structure and evolution beneath central Mexico. Pure appl Geophys 168:1475–1478. doi:10.1007/s00024-010-0207-9

    Article  Google Scholar 

  • McCulloch MT, Kyser TK, Woodhead JD, Kinsley L (1994) Pb–Sr–Nd–O isotopic constraints on the origin of rhyolites from the Taupo volcanic zone of New Zealand: evidence for assimilation followed by fractionation from basalt. Contrib Mineral Petrol 115:303–312

    Article  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355

    Article  Google Scholar 

  • Moore G, Marone C, Carmichael ISE, Renne P (1994) Basaltic volcanism ad extension near the intersection of the Sierra Madre volcanic province and the Mexican Volcanic Belt. GSA Bull 106:383–394

    Article  Google Scholar 

  • Mori L, Gómez-Tuena A, Cai Y, Goldstein SL (2007) Effects of prolonged flat subduction on the Miocene magmatic record of the central Trans-Mexican Volcanic Belt. Chem Geol 244:452–473

    Article  Google Scholar 

  • Mori L, Gomez-Tuena A, Schaaf P, Goldstein SL, Perez-Arvizu O, Solis-Pichardo G (2009) Lithospheric removal as trigger for flood basalt magmatism in the Trans-Mexican Volcanic Belt. J Petrol 50:2157–2218

    Article  Google Scholar 

  • Muntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 142:643–658. doi:10.1007/s004100100266

    Article  Google Scholar 

  • Nelson SA, Hegre J (1990) Volcan Las Navajas, a Pliocene–Pleistocene trachyte/peralkaline rhyolite volcano in the northwestern Mexican Volcanic Belt. Bull Volcanol 52:186–204

    Article  Google Scholar 

  • Ochs FA, Lange RA (1997) The partial molar volume, thermal expansivity, and compressibility of H2O in NaAlSi3O8 liquid: new measurements and an internally consistent model. Contrib Mineral Petrol 129:155–165

    Article  Google Scholar 

  • Orozco-Esquivel MT, Nieto-Samaniego AF, Alaniz-Alvares SA (2002) Origin of rhyolitic lavas in the Mesa Central, Mexico, by crustal melting related to extension. J Volcanol Geotherm Res 118:37–56

    Article  Google Scholar 

  • Ortega-Gutiérrez F, Elias-Herrera M, Reyes-Salas M, Macias-Rom C, Lopez R (2008) Late Ordovician–early Silurian continental collisional orogeny in southern Mexico and its bearing on Gondwana–Laurentia connections. Rev Mex Ciencias Geol 25:346–364

    Google Scholar 

  • Petrone CM (2010) Relationship between monogenetic magmatism and stratovolcanoes in western Mexico: the role of low-pressure magmatic processes. Lithos 119:585–606. doi:10.1016/j.lithos.2010.08.012

    Article  Google Scholar 

  • Petrone CM, Ferrari L (2008) Quaternary adakite—Nb-enriched basalt association in the western trans-Mexican Volcanic Belt: Is there any slab melt evidence? Contrib Mineral Petrol 156:73–86. doi:10.1007/s00410-007-0274-9

    Article  Google Scholar 

  • Petrone CM, Francalanci L, Carlson R, Ferrari L, Conticelli S (2003) Unusual coexistence of subduction-related and intraplate-type magmatism: Sr, Nd and Pb isotope and trace element data from the magmatism of the San Pedro-Ceboruco graben (Nayarit, Mexico). Chem Geol 193:1–24. doi:10.1016/S0009-2541(02)00229-2

    Article  Google Scholar 

  • Petrone CM, Francalanci L, Ferrari L, Schaaf P, Conticelli S (2006) The San Pedro-Cerro Grande volcanic complex (Nayarit, Mexico): inference on volcanology and magma evolution. GSA Special Pap 402:65–98. doi:10.1130/2006.2402(3)

    Google Scholar 

  • Price RC, Gamble JA, Smith IEM, Stewart RB, Eggins S, Wright IC (2005) An integrated model for the temporal evolution of andesites and rhyolites and crustal development in New Zealand’s North Island. J Volcanol Geotherm Res 140:1–24. doi:10.1016/j.jvolgeores.2004.07.013

    Article  Google Scholar 

  • Righter K, Carmichael ISE (1992) Hawaiites and related lavas in the Atenguillo graben, western Mexican Volcanic Belt. GSA Bull 104:1592–1607. doi:10.1130/0016-7606(1992)104

    Article  Google Scholar 

  • Righter K, Rosas-Elguera J (2001) Alkaline lavas in the volcanic front of the western Mexican volcanic belt: geology and petrology of the Ayutla and Tapalpa volcanic fields. J Petrol 42:2333–2361. doi:10.1093/petrology/42.12.2333

    Article  Google Scholar 

  • Righter K, Carmichael ISE, Becker T, Renne P (1995) Pliocene to Quaternary volcanism and tectonics at the intersection of the Mexican Volcanic Belt and the Gulf of California. GSA Bull 107:612–626. doi:10.1130/0016-7606(1995)107

    Article  Google Scholar 

  • Riley TR, Leat PT, Pankhurst RJ, Harris C (2001) Origin of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. J Petrol 42:1043–1065

    Article  Google Scholar 

  • Rossotti A, Ferrari L, López-Martínez M, Rosas-Elguera J (2002) Geology of the boundary between the Sierra Madre Occidental and the Trans-Mexican Volcanic Belt in the Guadalajara region, western Mexico. Rev Mex Ciencias Geol 19:1–15

    Google Scholar 

  • Ruiz J, Patchett PJ, Arculus RJ (1988) Nd-Sr isotope composition of lower crustal xenoliths—evidence for the origin of mid-Tertiary felsic volcanism in Mexico. Contrib Mineral Petrol 99:36–43

    Article  Google Scholar 

  • Ruiz J, Patchett PJ, Arculus RJ (1990) Reply to “Comments on Nd–Sr isotope composition of lower crustal xenoliths—evidence for the origin of mid-tertiary felsic volcanism in Mexico” by K.L. Cameron and J.V. Robinson. Contrib Mineral Petrol 104:615–618

    Article  Google Scholar 

  • Schaaf P (1990) Isotopengeochemische Untersuchungen an granitoiden Geste- inen eines aktiven Kontinentalrandes: Alter und Herkunft der Tiefenges- teinskomplexe der Pazifikküste Mexikos, zwischen Puerto Vallarta und Acapulco [Ph.D. thesis]. Münich University of Münich 202 p

  • Schaaf P, Heinrich W, Besch T (1994) Composition and Sm–Nd isotopic data of the lower crust beneath San Luis Potosi, central Mexico: evidence from a granulite-facies xenolith suite. Chem Geol 118:63–84

    Article  Google Scholar 

  • Schaaf P, Hall BV, Bissig T (2003) The Puerto Vallarta batholith and Cuale mining district, Jalisco, Mexico—high diversity parenthood of continental arc magmas and Kuroko-type volcanogenic massive sulfide deposits. In: Morán Zenteno D (ed) Geologic transects across Cordilleran Mexico. Instituto de Geología, Universidad Nacional Autónoma de México (UNAM) Spec Pub 1: 183–200

  • Smith RD, Cameron KL, McDowell FW, Niemeyer S, Sampson DE (1996) Generation of voluminous silicic magmas and formation of mid-Cenozoic crust beneath north-central Mexico: evidence from ignimbrites, associated lavas, deep crustal granulites, and mantle pyroxenites. Contrib Mineral Petrol 123:375–389

    Article  Google Scholar 

  • Sparks RSJ, Huppert HE (1984) Density changes during the fractional crystallization of basaltic magmas: fluid dynamic implications. Contrib Mineral Petrol 85:300–309

    Article  Google Scholar 

  • Sun S, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Saunders A, Norry M (eds) Magmatism in ocean basins. Geol Soc Lond Spec Pub 42:313–345

  • Tatsumi Y, Suzuki T (2009) Tholeiitic vs calc-alkalic differentiation and evolution of arc crust: constraints from melting experiments on a basalt from Izu–Bonin–Mariana arc. J Petrol 50(8):1275–1603. doi:10.1093/petrology/egp044

    Article  Google Scholar 

  • Troll VR, Sachs PM, Schmincke HU, Sumita M (2003) The REE-Ti mineral chevkinite in comenditic magmas from Gran Canaria, Spain: a SYXRF-probe study. Contrib Mineral Petrol 145:730–741. doi:10.1007/s00410-003-0475-9

    Article  Google Scholar 

  • Urrutia-Fucugauchi J, Uribe-Cifuentes RM (1999) Xenoliths from the Valle de Santiago maar field, Michoacan–Guanajuato volcanic field, Central Mexico. Int Geol Rev 41:1067–1081

    Article  Google Scholar 

  • Valdez-Moreno G, Schaaf P, Macías JL, Kusakabe M (2006) New Sr–Nd–Pb–O isotope data for Colima Volcano and evidence for the nature of the local basement. GSA Special Pap 402:45–63. doi:10.1130/2006.2402(02

    Google Scholar 

  • Verma SP (1984) Sr and Nd isotopic evidence for petrogenesis of mid-Tertiary felsic volcanism in the mineral district of Zacatecas, Zac (Sierra Madre Occidental), Mexico. Isot Geosci 2:37–53

    Google Scholar 

  • Wallace P, Carmichael ISE (1994) Petrology of Volcan Tequila, Jalisco, Mexico: disequilibrium phenocryst assemblages and evolution of the subvolcanic magma system. Contrib Mineral Petrol 117:345–361

    Article  Google Scholar 

  • Wark DA (1991) Oligocene ash flow volcanism, northern Sierra Madre Occidental: role of mafic and intermediate-composition magmas in rhyolite genesis. J Geophys Res 96:13389–13411. doi:10.1029/90JB02666

    Article  Google Scholar 

  • White JC (2003) Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part II: empirical equations for calculating trace-element partition coefficients of large-ion lithophile, high field-strength, and rare-earth elements. Am Mineral 88:330–337

    Google Scholar 

  • White JC, Holt GS, Parker DF, Ren M (2003) Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part I: systematics of trace elements partitioning. Am Mineral 88:316–329

    Google Scholar 

  • Wilke M, Behrens H (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. Contrib Mineral Petrol 137:102–114

    Article  Google Scholar 

Download references

Acknowledgments

The work was partly supported by a bilateral Grant CONACyT-SRE (Mexico)—MAE (Italia). The authors thank S. Tommasini, L. Francalanci and all the staff of the Isotope Lab of the University of Florence for allowing access to their isotope lab; O. Perez-Arvizu, CGEO-UNAM for ICP-MS trace element analyses; John Spratt at NHM for allowing access to the EPMA lab. The authors would like to thank T. Grove for handling the manuscript, G. Mahood and an anonymous reviewer for improving the quality and focus of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Maria Petrone.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrone, C.M., Orozco-Esquivel, T. & Ferrari, L. Petrogenesis and geodynamic significance of silicic volcanism in the western Trans-Mexican Volcanic Belt: role of gabbroic cumulates. Contrib Mineral Petrol 167, 1006 (2014). https://doi.org/10.1007/s00410-014-1006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1006-6

Keywords

Navigation