Skip to main content
Log in

Voxel model of individual cells and its implementation in microdosimetric calculations using GEANT4

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Accurate dosimetric calculations at cellular and sub-cellular levels are crucial to obtain an increased understanding of the interactions of ionizing radiation with a cell and its nucleus and cytoplasm. Ion microbeams provide a superior opportunity to irradiate small biological samples, e.g., DNA, cells, and to compare their response to computer simulations. However, the phantoms used to simulate small biological samples at cellular levels are often simplified as simple volumes filled with water. As a first step to improve the situation in comparing measurements of cell response to ionizing radiation with model calculations, a realistic voxel model of a KB cell was constructed and used together with an already constructed geometry and tracking 4 (GEANT4) model of the horizontal microbeam line of the Centre d’Etudes Nucléaires de Bordeaux-Gradignan (CENBG) 3.5 MV Van de Graaf accelerator at the CENBG, France. The microbeam model was then implemented into GEANT4 for simulations of the average number of particles hitting an irradiated cell when a specified number of particles are produced in the beam line. The result shows that when irradiating the developed voxel model of a KB cell with 200 α particles, with a nominal energy of 3 MeV in the beam line and 2.34 MeV at the cell entrance, 100 particles hit the cell on average. The mean specific energy is 0.209 ± 0.019 Gy in the nucleus and 0.044 ± 0.001 Gy in the cytoplasm. These results are in agreement with previously published data, which indicates that this model could act as a reference model for dosimetric calculations of radiobiological experiments, and that the proposed method could be applied to build a cell model database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agostinelli S, Allison J, Amako K, Apostolakis J, Araujj H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behnel F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhard H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Fortias A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas JJ, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A (2003) GEANT4—a simulation toolkit. Nucl Instrum Methods Phys Res A 506:250–303

    Article  ADS  Google Scholar 

  • Alard JP, Bodez V, Tchirko A, Tchirkov A, Nénot ML, Arnold J, Crespin S, Rapp M, Verrelle P, Dionet C (2002) Simulation of neutron interactions at the single-cell level. Radiat Res 158:650–656

    Article  Google Scholar 

  • Allison J, Amako K, Apostolakis J, Araujo H, Dubois PA, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R, Cirrone GAP, Cooperman G, Cosmo G, Cuttone G, Daquino GG, Donszelmann M, Dressel M, Folger G, Foppiano F, Generowicz J, Grichine V, Guatelli S, Gumplinger P, Heikkinen A, Hrivnacova I, Howard A, Incerti S, Ivanchenko V, Johnson T, Jones F, Koi T, Kokoulin R, Kossov M, Kurashige H, Lara V, Larsson S, Lei F, Link O, Longo F, Maire M, Mantero A, Mascialin B, McLaren I, Lorenzo PM, Minamimoto K, Murakami K, Nieminen P, Pandola L, Parlati S, Peralta L, Perl J, Pfeiffer A, Pia MG, Ribon A, Rodrigues P, Russo G, Sadilov S, Santin G, Sasaki T, Smith D, Starkov N, Tanaka S, Tcherniaev E, Tome B, Trindade A, Truscott P, Urban L, Verderi M, Walkden A, Wellisch JP, Williams DC, Wright D, Yoshida H (2006) GEANT4 developments and applications. IEEE Trans Nucl Sci 53:270–278

    Article  ADS  Google Scholar 

  • Antcheva I, Ballintijn M, Bellenot B (2011) ROOT—A C++ framework for petabyte data storage, statistical analysis and visualization. Comput Phys Commun 182:1384–1385

    Article  ADS  Google Scholar 

  • Archambault L, Beaulieu L, Carrier JF (2003) Overview of GEANT4 applications in medical physics. Nucl Sci Symp Conf Rec 3:1743–1745

    Google Scholar 

  • Arne M (1986) Dosimetry for radiation processing. Int J Radiat Appl Instrum Part C Radiat Phys Chem 28:521–529

    Google Scholar 

  • Barberet P, Vianna F, Karamitros M, Brun T, Gordillo N, Moretto P, Incerti S, Seznec H (2012) Monte-Carlo dosimetry on a realistic cell monolayer geometry exposed to alpha-particle. Phys Med Biol 57:2189–2207

    Article  Google Scholar 

  • Barcellos MH, Brooks AL (2001) Extracellular signaling through the micro-environment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability. Radiat Res 156:618–627

    Article  Google Scholar 

  • Baverstock K, Belyakov OV (2005) Classical radiation biology, the bystander effect and paradigms: a reply. Hum Exp Toxicol 24:537–542

    Article  Google Scholar 

  • Beaton LA, Burn TA, Stocki TJ, Chauhan V, Wilkins RC (2011) Development and characterization of an in vitro alpha radiation exposure system. Phys Med Biol 56:3645–3658

    Article  Google Scholar 

  • Belyakov OV, Malcolmson AM, Folkard M, Prise KM, Michael BD (2001) Direct evidence for a bystander effect of ionizing radiation in primary human fibroblasts. Br J Cancer 84:674–679

    Article  Google Scholar 

  • Belyakov OV, Folkard M, Prise KM, Michael BD, Mothersill C (2002) Non-targeted effects of radiation: applications for radiation protection and contribution to LNT discussion. In: Proceedings of the European IRPA congress 2002 “Towards harmonisation of radiation protection in Europe”. Florence, Italy, 8–11 October 2002

  • Blau M, Altenburger K (1922) Über einige Wirkungen von Strahlen. II. Z Phys 12:315–329

    Article  ADS  Google Scholar 

  • Chauvie S, Francis Z, Guatelli S, Incerti S, Mascialino B, Moretto P, Nieminen P, Pia MG (2007) GEANT4 physics processes for microdosimetry simulation: design foundation and implementation of the first set of models. IEEE Trans Nucl Sci 54:2619–2628

    Article  ADS  Google Scholar 

  • Collins TJ (2007) ImageJ for microscopy. Biotechniques 43:25–30

    Article  Google Scholar 

  • Freudenber R, Wendisch M, Kotzerke J (2011) GEANT4-simulations for cellular dosimetry in nuclear medicine. Z Med Phys 21:281–289

    Article  Google Scholar 

  • Incerti S, Baldacchino G, Bernal M, Capra R, Champion C, Francis Z, Gueye P, Mantero A, Mascialino B, Moretto P, Nieminen P, Villagrasa C, Zacharatou C (2010) The GEANT4-DNA project. Int J Model Simul Sci Comput 1:157–158

    Article  Google Scholar 

  • Incerti S, Barberet Ph, Villeneuve R, Aguer P, Gontier E, Michelet-Habchi C, Moretto P, Nguyen DT, Pouthier T, Smith RW (2004) Simulation of cellular irradiation with the CENBG microbeam line using GEANT4. IEEE Trans Nucl Sci 51:1395–1401

    Article  ADS  Google Scholar 

  • Incerti S, Gault N, Habchi C, Lefaix JL, Moretto Ph, Poncy JL, Pouthier T, Seznec H (2006) A comparison of cellular irradiation techniques with alpha particles using the GEANT4 Monte Carlo simulation toolkit. Radiat Prot Dosim 122(1–4):327–329

    Google Scholar 

  • Incerti S, Seznec H, Simon M, Barberet Ph, Habchi C, Moretto Ph (2009) Monte Carlo dosimetry for targeted irradiation of individual cells using a microbeam facility. Radiat Prot Dosim 133:2–11

    Article  Google Scholar 

  • Ivanov VI (1973) II All-union conference on microdosimetry. Sov Atomic Energy 35:954–955

    Article  Google Scholar 

  • Iyer R, Lehnert BE, Svensson R (2000) Factors underlying the cell growth-related bystander responses to alpha particles. Cancer Res 60:1290–1297

    Google Scholar 

  • Karamitros M, Mantero A, Incerti S (2011) Modeling radiation chemistry in the GEANT4 toolkit. Prog Nucl Sci Technol 2:503–508

    Google Scholar 

  • Lea DE (1946) Actions of radiations on living cells. Cambridge University Press, Cambridge

    Google Scholar 

  • Lett JT, Stacey KA, Alexander P (1961) Cross-linking of dry deoxyribonucleic acids by electrons. Radiat Res 14:349–362

    Article  Google Scholar 

  • Lewis DA, Mayhugh BM, Qin Y, Trott K, Mendonca MS (2001) Production of delayed death and neoplastic transformation in CGL1 cells by radiation-induced bystander effects. Radiat Res 156:251–258

    Article  Google Scholar 

  • Lorimore SA, Kadhim MA, Pocock DA, Papworth D, Stevens DL, Goodhead DT, Wright EG (1998) Chromosomal instability in the descendants of unirradiated surviving cells after a-particle irradiation. Proc Natl Acad Sci 95(5730–5733):8

    Google Scholar 

  • Marshell M, Gibson JA, Holt PD (1970) An analysis of the target theory of Lea with modern data. Int J Radiat Biol Relat Stud Phys Chem Med 18(2):127–138

    Article  Google Scholar 

  • Matile P (1971) Vacuoles, lysosomes of neurospora. Cytobiologie 3:324–330

    Google Scholar 

  • Matsumoto H, Hayashi S, Hatashita M (2001) Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiat Res 155:387–396

    Article  Google Scholar 

  • Miller JH, Resat MS, Metting NF, Wei K, Wilson WE (2000) Monte Carlo simulation of single-cell irradiation by an electron microbeam. Radiat Environ Biophys 39:173–177

    Article  Google Scholar 

  • Nagasawa H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, Ohtsubo T, Kitai R, Ohnishi T, Kano E (1999) Unexpected sensitivity to the induction of mutations by very low doses of alpha-particle radiation: evidence for a bystander effect. Radiat Res 152:552–557

    Article  Google Scholar 

  • Puck TT, Marcus PI (1956) Action of Xrays on mammalian cells. J Exp Med 103:653–666

    Article  Google Scholar 

  • Rademakers F, Brun R (1998) ROOT: an object-oriented data analysis framework. Nucl Instrum Meth Phys Res A389:81–86

    Google Scholar 

  • Sawant SG, Pehrson GR, Geard CR, Brenner DJ, Hall EJ (2001) The bystander effect in radiation oncogenesis. Radiat Res 155:397–401

    Article  Google Scholar 

  • Sutton ML, Hendry JH (1991) Applied Radiobiology. In: Easson EC, Pointon RCS (eds) The radiotherapy of malignant disease. Springer, London, pp 33–55

  • Tea-Yuan H, Chin-Yuan H (1994) On the joint distribution of Grubbs’ statistics. Ann Inst Stat Math 46:769–775

    Article  MATH  Google Scholar 

  • Ward J (1999) New paradigms for low-dose radiation response. In: Proceedings of the American statistical association conference on radiation and health. Radiat Res 151:92–117

  • Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60:7075–7083

    Google Scholar 

  • Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK (2000) Induction of a bystander mutagenic effect of alpha particles in mammalian cells. PNAS 97:2099–2104

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We appreciate the help of Dr. B. Li during the biological experiments. We also acknowledge the support of Dr. S. Incerti for helping us with the GEANT4 calculations. This work was funded by PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sihver, L., Ni, J., Sun, L. et al. Voxel model of individual cells and its implementation in microdosimetric calculations using GEANT4. Radiat Environ Biophys 53, 571–579 (2014). https://doi.org/10.1007/s00411-014-0549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-014-0549-2

Keywords

Navigation