Skip to main content
Log in

The chromosomal basis of meiotic acentrosomal spindle assembly and function in oocytes

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Several aspects of meiosis are impacted by the absence of centrosomes in oocytes. Here, we review four aspects of meiosis I that are significantly affected by the absence of centrosomes in oocyte spindles. One, microtubules tend to assemble around the chromosomes. Two, the organization of these microtubules into a bipolar spindle is directed by the chromosomes. Three, chromosome bi-orientation and attachment to microtubules from the correct pole require modification of the mechanisms used in mitotic cells. Four, chromosome movement to the poles at anaphase cannot rely on polar anchoring of spindle microtubules by centrosomes. Overall, the chromosomes are more active participants during acentrosomal spindle assembly in oocytes, compared to mitotic and male meiotic divisions where centrosomes are present. The chromosomes are endowed with information that can direct the meiotic divisions and dictate their own behavior in oocytes. Processes beyond those known from mitosis appear to be required for their bi-orientation at meiosis I. As mitosis occurs without centrosomes in many systems other than oocytes, including all plants, the concepts discussed here may not be limited to oocytes. The study of meiosis in oocytes has revealed mechanisms that are operating in mitosis and will probably continue to do so.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe Y, Sako K, Takagaki K, Hirayama Y, Uchida KS, Herman JA, DeLuca JG, Hirota T (2016) HP1-assisted Aurora B kinase activity prevents chromosome segregation errors. Dev Cell 36:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ainsztein AM, Kandels-Lewis SE, Mackay AM, Earnshaw WC (1998) INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J Cell Biol 143:1763–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almonacid M, Terret M, Verlhac MH (2014) Actin-based spindle positioning: new insights from female gametes. J Cell Sci 127:477–483

    Article  CAS  PubMed  Google Scholar 

  • Baker BS, Hall JC (1976) Meiotic mutants: genetic control of meiotic recombination and chromosome segregation. In: Ashburner M, Novitski E (eds) The genetics and biology of drosophila. Academic Press, New York, pp. 351–434

    Google Scholar 

  • Balboula AZ, Schindler K (2014) Selective disruption of aurora C kinase reveals distinct functions from aurora B kinase during meiosis in mouse oocytes. PLoS Genet 10:e1004194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balboula AZ, Nguyen AL, Gentilello AS, Quartuccio SM, Drutovic D, Solc P, Schindler K (2016) Haspin kinase regulates microtubule-organizing center clustering and stability through Aurora kinase C in mouse oocytes. J Cell Sci.

  • Baumbach J, Novak ZA, Raff JW, Wainman A (2015) Dissecting the function and assembly of acentriolar microtubule organizing centers in Drosophila cells in vivo. PLoS Genet 11:e1005261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blower MD (2016) Centromeric transcription regulates aurora-B localization and activation. Cell Rep 15:1624–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breuer M, Kolano A, Kwon M, Li CC, Tsai TF, Pellman D, Brunet S, Verlhac MH (2010) HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells. J Cell Biol 191:1251–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JR, Koretke KK, Birkeland ML, Sanseau P, Patrick DR (2004) Evolutionary relationships of Aurora kinases: implications for model organism studies and the development of anti-cancer drugs. BMC Evol Biol 4:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brunet S, Verlhac MH (2011) Positioning to get out of meiosis: the asymmetry of division. Hum Reprod Update 17:68–75

    Article  PubMed  Google Scholar 

  • Brunet S, Polanski Z, Verlhac MH, Kubiak JZ, Maro B (1998) Bipolar meiotic spindle formation without chromatin. Curr Biol 8:1231–1234

    Article  CAS  PubMed  Google Scholar 

  • Brunet S, Maria AS, Guillaud P, Dujardin D, Kubiak JZ, Maro B (1999) Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J Cell Biol 146:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burbank KS, Mitchison TJ, Fisher DS (2007) Slide-and-cluster models for spindle assembly. Curr Biol 17:1373–1383

    Article  CAS  PubMed  Google Scholar 

  • Cai S, O’Connell CB, Khodjakov A, Walczak CE (2009) Chromosome congression in the absence of kinetochore fibres. Nat Cell Biol 11:832–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW (1999) Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400:178–181

    Article  CAS  PubMed  Google Scholar 

  • Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13:789–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesario J, McKim KS (2011) RanGTP is required for meiotic spindle organization and the initiation of embryonic development in Drosophila. J Cell Sci 124:3797–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesario JM, Jang JK, Redding B, Shah N, Rahman T, McKim KS (2006) Kinesin 6 family member Subito participates in mitotic spindle assembly and interacts with mitotic regulators. J Cell Sci 119:4770–4780

    Article  CAS  PubMed  Google Scholar 

  • Cha BJ, Koppetsch BS, Theurkauf WE (2001) In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell 106:35–46

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Bowers S, Lipinszki Z, Palladino J, Trusiak S, Bettini E, Rosin L, Przewloka MR, Glover DM, O’Neill RJ, Mellone BG (2015) Establishment of Centromeric chromatin by the CENP-A assembly factor CAL1 requires FACT-mediated transcription. Dev Cell 34:73–84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chmátal L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J, Searle JB, Schultz RM, Lampson MA (2014) Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr Biol 24:2295–2300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chmátal L, Yang K, Schultz RM, Lampson MA (2015) Spatial regulation of kinetochore microtubule attachments by destabilization at spindle poles in meiosis I. Curr Biol 25:1835–1841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarke PR, Zhang C (2008) Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 9:464–477

    Article  CAS  PubMed  Google Scholar 

  • Clift D, Schuh M (2015) A three-step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes. Nat Commun 6:7217

    Article  PubMed  PubMed Central  Google Scholar 

  • Colombié N, Cullen CF, Brittle AL, Jang JK, Earnshaw WC, Carmena M, McKim K, Ohkura H (2008) Dual roles of Incenp crucial to the assembly of the acentrosomal metaphase spindle in female meiosis. Development 135:3239–3246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connolly AA, Sugioka K, Chuang CH, Lowry JB, Bowerman B (2015) KLP-7 acts through the Ndc80 complex to limit pole number in C. elegans oocyte meiotic spindle assembly. J Cell Biol 210:917–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes DB, McNally KL, Mains PE, McNally FJ (2015) The asymmetry of female meiosis reduces the frequency of inheritance of unpaired chromosomes. eLife 4:e06056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Courtois A, Schuh M, Ellenberg J, Hiiragi T (2012) The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. J Cell Biol 198:357–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen CF, Ohkura H (2001) Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles. Nature Cell Biol 3:637–642

    Article  CAS  PubMed  Google Scholar 

  • Cullen CF, Brittle AL, Ito T, Ohkura H (2005) The conserved kinase NHK-1 is essential for mitotic progression and unifying acentrosomal meiotic spindles in Drosophila melanogaster. J Cell Biol 171:593–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Shah SJ, Fan B, Paik D, DiSanto DJ, Hinman AM, Cesario JM, Battaglia RA, Demos N, McKim KS (2016) Spindle assembly and chromosome segregation requires central spindle proteins in drosophila oocytes. Genetics 202:61–75

    Article  CAS  PubMed  Google Scholar 

  • Davydenko O, Schultz RM, Lampson MA (2013) Increased CDK1 activity determines the timing of kinetochore-microtubule attachments in meiosis I. J Cell Biol 202:221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng M, Gao J, Suraneni P, Li R (2009) Kinetochore-independent chromosome poleward movement during anaphase of meiosis II in mouse eggs. PLoS One 4:e5249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dumont J, Desai A (2012) Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. Trends Cell Biol 22:241–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont J, Petri S, Pellegrin F, Terret ME, Bohnsack MT, Rassinier P, Georget V, Kalab P, Gruss OJ, Verlhac MH (2007) A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol 176:295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont J, Oegema K, Desai A (2010) A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis. Nat Cell Biol 12:894–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emanuele MJ, Lan W, Jwa M, Miller SA, Chan CS, Stukenberg PT (2008) Aurora B kinase and protein phosphatase 1 have opposing roles in modulating kinetochore assembly. J Cell Biol 181:241–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1992) Estimating effective population size from samples of sequences: a bootstrap Monte Carlo integration method. Genet Res 60:209–220

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Miranda G, Trakala M, Martín J, Escobar B, González A, Ghyselinck NB, Ortega S, Cañamero M, Pérez de Castro I, Malumbres M (2011) Genetic disruption of aurora B uncovers an essential role for aurora C during early mammalian development. Development 138:2661–2672

    Article  PubMed  CAS  Google Scholar 

  • FitzHarris G (2012) Anaphase B precedes anaphase A in the mouse egg. Curr Biol 22:437–444

    Article  CAS  PubMed  Google Scholar 

  • Gard DL (1992) Microtubule organization during maturation of Xenopus oocytes: assembly and rotation of the meiotic spindles. Dev Biol 151:516–530

    Article  CAS  PubMed  Google Scholar 

  • Gatti M, Bucciarelli E, Lattao R, Pellacani C, Mottier-Pavie V, Giansanti MG, Somma MP, Bonaccorsi S (2012) The relative roles of centrosomal and kinetochore-driven microtubules in Drosophila spindle formation. Exp Cell Res 318:1375–1380

    Article  CAS  PubMed  Google Scholar 

  • Gilliland WD, Wayson SM, Hawley RS (2005) The meiotic defects of mutants in the Drosophila mps1 gene reveal a critical role of Mps1 in the segregation of achiasmate homologs. Curr Biol 15:672–677

    Article  CAS  PubMed  Google Scholar 

  • Gilliland WD, Hughes SE, Cotitta JL, Takeo S, Xiang Y, Hawley RS (2007) The multiple roles of mps1 in Drosophila female meiosis. PLoS Genet 3:e113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giunta KL, Jang JK, Manheim EA, Subramanian G, McKim KS (2002) Subito encodes a kinesin-like protein required for meiotic spindle pole formation in Drosophila melanogaster. Genetics 160:1489–1501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Głuszek AA, Cullen CF, Li W, Battaglia RA, Radford SJ, Costa MF, McKim KS, Goshima G, Ohkura H (2015) The microtubule catastrophe promoter Sentin delays stable kinetochore-microtubule attachment in oocytes. J Cell Biol 211:1113–1120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godek KM, Kabeche L, Compton DA (2015) Regulation of kinetochore-microtubule attachments through homeostatic control during mitosis. Nat Rev Mol Cell Biol 16:57–64

    Article  CAS  PubMed  Google Scholar 

  • Grenfell AW, Heald R, Strzelecka M (2016) Mitotic noncoding RNA processing promotes kinetochore and spindle assembly in Xenopus. J Cell Biol 214:133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruneberg U, Neef R, Honda R, Nigg EA, Barr FA (2004) Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. J Cell Biol 166:167–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gui L, Homer H (2012) Spindle assembly checkpoint signalling is uncoupled from chromosomal position in mouse oocytes. Development 139:1941–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hached K, Xie SZ, Buffin E, Cladiere D, Rachez C, Sacras M, Sorger PK, Wassmann K (2011) Mps1 at kinetochores is essential for female mouse meiosis I. Development 138:2261–2271

    Article  CAS  PubMed  Google Scholar 

  • Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291

    Article  CAS  PubMed  Google Scholar 

  • Heald R, Khodjakov A (2015) Thirty years of search and capture: the complex simplicity of mitotic spindle assembly. J Cell Biol 211:1103–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P, Hyman A, Karsenti E (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382:420–425

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (1976) Meiotic drive for B-chromosomes in the primary oocytes of Myrmeleotettix maculatus (Orthopera: Acrididae). Chromosoma 56:381–391

    Article  CAS  PubMed  Google Scholar 

  • Holubcová Z, Blayney M, Elder K, Schuh M (2015) Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes Science 348:1143–1147

    PubMed  Google Scholar 

  • Hughes SE, Gilliland WD, Cotitta JL, Takeo S, Collins KA, Hawley RS (2009) Heterochromatic threads connect oscillating chromosomes during prometaphase I in Drosophila oocytes. PLoS Genet 5:e1000348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jambhekar A, Emerman AB, Schweidenback CT, Blower MD (2014) RNA stimulates Aurora B kinase activity during mitosis. PLoS One 9:e100748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jang JK, Rahman T, McKim KS (2005) The kinesinlike protein Subito contributes to central spindle assembly and organization of the meiotic spindle in Drosophila oocytes. Mol Biol Cell 16:4684–4694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang JK, Rahman T, Kober VS, Cesario J, McKim KS (2007) Misregulation of the kinesin-like protein subito induces meiotic spindle formation in the absence of chromosomes and centrosomes. Genetics 177:267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janson ME, Loughlin R, Loïodice I, Fu C, Brunner D, Nédélec FJ, Tran PT (2007) Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128:357–368

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kabeche L, Compton DA (2013) Cyclin A regulates kinetochore microtubules to promote faithful chromosome segregation. Nature 502:110–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalantzaki M, Kitamura E, Zhang T, Mino A, Novák B, Tanaka TU (2015) Kinetochore-microtubule error correction is driven by differentially regulated interaction modes. Nat Cell Biol 17:421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor TM, Lampson MA, Hergert P, Cameron L, Cimini D, Salmon ED, McEwen BF, Khodjakov A (2006) Chromosomes can congress to the metaphase plate before biorientation. Science 311:388–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly AE, Sampath SC, Maniar TA, Woo EM, Chait BT, Funabiki H (2007) Chromosomal enrichment and activation of the aurora B pathway are coupled to spatially regulate spindle assembly. Dev Cell 12:31–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, Funabiki H (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330:235–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Yu H (2015) Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J Cell Biol 208:181–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschner M, Mitchison T (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–342

    Article  CAS  PubMed  Google Scholar 

  • Kitajima TS, Ohsugi M, Ellenberg J (2011) Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 146:568–581

    Article  CAS  PubMed  Google Scholar 

  • Kolano A, Brunet S, Silk AD, Cleveland DW, Verlhac MH (2012) Error-prone mammalian female meiosis from silencing the spindle assembly checkpoint without normal interkinetochore tension. Proc Natl Acad Sci U S A 109:E1858–E1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouznetsova A, Lister L, Nordenskjöld M, Herbert M, Höög C (2007) Bi-orientation of achiasmatic chromosomes in meiosis I oocytes contributes to aneuploidy in mice. Nat Genet 39:966–968

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Lampson MA, Renduchitala K, Khodjakov A, Kapoor TM (2004) Correcting improper chromosome-spindle attachments during cell division. Nat Cell Biol 6:232–237

    Article  CAS  PubMed  Google Scholar 

  • Lane SI, Chang HY, Jennings PC, Jones KT (2010) The Aurora kinase inhibitor ZM447439 accelerates first meiosis in mouse oocytes by overriding the spindle assembly checkpoint. Reproduction 140:521–530

    Article  CAS  PubMed  Google Scholar 

  • Lane SI, Yun Y, Jones KT (2012) Timing of anaphase-promoting complex activation in mouse oocytes is predicted by microtubule-kinetochore attachment but not by bivalent alignment or tension. Development 139:1947–1955

    Article  CAS  PubMed  Google Scholar 

  • LeMaire-Adkins R, Radke K, Hunt PA (1997) Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol 139:1611–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loughlin R, Heald R, Nédélec F (2010) A computational model predicts Xenopus meiotic spindle organization. J Cell Biol 191:1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luksza M, Queguigner I, Verlhac MH, Brunet S (2013) Rebuilding MTOCs upon centriole loss during mouse oogenesis. Dev Biol 382:48–56

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Viveiros MM (2014) Depletion of pericentrin in mouse oocytes disrupts microtubule organizing center function and meiotic spindle organization. Mol Reprod Dev 81:1019–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magidson V, O’Connell CB, Loncarek J, Paul R, Mogilner A, Khodjakov A (2011) The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell 146:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiato H, Rieder CL, Khodjakov A (2004) Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167:831–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mailhes JB, Mastromatteo C, Fuseler JW (2004) Transient exposure to the Eg5 kinesin inhibitor monastrol leads to syntelic orientation of chromosomes and aneuploidy in mouse oocytes. Mutat Res 559:153–167

    Article  CAS  PubMed  Google Scholar 

  • Maresca TJ, Groen AC, Gatlin JC, Ohi R, Mitchison TJ, Salmon ED (2009) Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity. Curr Biol 19:1210–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maro B, Johnson MH, Webb M, Flach G (1986) Mechanism of polar body formation in the mouse oocyte: an interaction between the chromosomes, the cytoskeleton and the plasma membrane. J Embryol Exp Morphol 92:11–32

    CAS  PubMed  Google Scholar 

  • McKim KS, Hawley RS (1995) Chromosomal control of meiotic cell division. Science 270:1595–1601

    Article  CAS  PubMed  Google Scholar 

  • McKim KS, Jang JK, Theurkauf WE, Hawley RS (1993) Mechanical basis of meiotic metaphase arrest. Nature 362:364–366

    Article  CAS  PubMed  Google Scholar 

  • McNally FJ (2013) Mechanisms of spindle positioning. J Cell Biol 200:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNally KP, Panzica MT, Kim T, Cortes DB, McNally FJ (2016) A novel chromosome segregation mechanism during female meiosis. Mol Biol Cell.

  • Meireles AM, Fisher KH, Colombie N, Wakefield JG, Ohkura H (2009) Wac: a new Augmin subunit required for chromosome alignment but not for acentrosomal microtubule assembly in female meiosis. J Cell Biol 184:777–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meunier S, Vernos I (2016) Acentrosomal microtubule assembly in mitosis: the where, when, and how. Trends Cell Biol 26:80–87

    Article  CAS  PubMed  Google Scholar 

  • Mishima M, Kaitna S, Glotzer M (2002) Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2:41–54

    Article  CAS  PubMed  Google Scholar 

  • Moutinho-Pereira S, Stuurman N, Afonso O, Hornsveld M, Aguiar P, Goshima G, Vale RD, Maiato H (2013) Genes involved in centrosome-independent mitotic spindle assembly in Drosophila S2 cells. Proc Natl Acad Sci U S A 110:19808–19813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muscat CC, Torre-Santiago KM, Tran MV, Powers JA, Wignall SM (2015) Kinetochore-independent chromosome segregation driven by lateral microtubule bundles. eLife 4

  • Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, Weis K (2001) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104:95–106

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka SI, Hodges CA, Albertini DF, Hunt PA (2011) Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. Curr Biol 21:651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaoka SI, Hassold TJ, Hunt PA (2012) Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet 13:493–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neef R, Preisinger C, Sutcliffe J, Kopajtich R, Nigg EA, Mayer TU, Barr FA (2003) Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J Cell Biol 162:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicklas RB (1977) Chromosome distribution: experiments on cell hybrids and in vitro. Philosophical Transcripts of the Royal Society of London B 277:267–276

    Article  CAS  Google Scholar 

  • Nicklas RB (1997) How cells get the right chromosomes. Science 275:632–637

    Article  CAS  PubMed  Google Scholar 

  • Nislow C, Lombillo VA, Kuriyama R, McIntosh JR (1992) A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359:543–547

    Article  CAS  PubMed  Google Scholar 

  • Ohi R, Burbank K, Liu Q, Mitchison TJ (2007) Nonredundant functions of Kinesin-13 s during meiotic spindle assembly. Curr Biol 17:953–959

    Article  CAS  PubMed  Google Scholar 

  • O’Tousa J (1982) Meiotic chromosome behavior influenced by mutation-altered disjunction in Drosophila melanogaster females. Genetics 102:503–524

    PubMed  PubMed Central  Google Scholar 

  • Paliulis LV, Nicklas RB (2000) The reduction of chromosome number in meiosis is determined by properties built into the chromosomes. J Cell Biol 150:1223–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palumbo V, Pellacani C, Heesom KJ, Rogala KB, Deane CM, Mottier-Pavie V, Gatti M, Bonaccorsi S, Wakefield JG (2015) Misato controls mitotic microtubule generation by stabilizing the TCP-1 tubulin chaperone complex [corrected]. Curr Biol 25:1777–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfender S, Kuznetsov V, Pasternak M, Tischer T, Santhanam B, Schuh M (2015) Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes. Nature 524:239–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimenta-Marques A, Bento I, Lopes CA, Duarte P, Jana SC, Bettencourt-Dias M (2016) A mechanism for the elimination of the female gamete centrosome in Drosophila melanogaster. Science 353:aaf4866

    Article  CAS  PubMed  Google Scholar 

  • Polanski Z, Hoffmann S, Tsurumi C (2005) Oocyte nucleus controls progression through meiotic maturation. Dev Biol 281:184–195

    Article  CAS  PubMed  Google Scholar 

  • Radford SJ, Harrison AM, McKim KS (2012a) Microtubule-depolymerizing kinesin KLP10A restricts the length of the acentrosomal meiotic spindle in drosophila females. Genetics 192:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radford SJ, Jang JK, McKim KS (2012b) The chromosomal passenger complex is required for meiotic acentrosomal spindle assembly and chromosome Bi-orientation. Genetics 192:417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radford SJ, Hoang TL, Głuszek AA, Ohkura H, McKim KS (2015) Lateral and end-on kinetochore attachments are coordinated to achieve bi-orientation in Drosophila oocytes. PLoS Genet 11:e1005605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rago F, Gascoigne KE, Cheeseman IM (2015) Distinct organization and regulation of the outer kinetochore KMN network downstream of CENP-C and CENP-T. Curr Biol 25:671–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rattani A, Wolna M, Ploquin M, Helmhart W, Morrone S, Mayer B, Godwin J, Xu W, Stemmann O, Pendas A, Nasmyth K (2013) Sgol2 provides a regulatory platform that coordinates essential cell cycle processes during meiosis I in oocytes. eLife 2:e01133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reschen RF, Colombie N, Wheatley L, Dobbelaere J, St Johnston D, Ohkura H, Raff JW (2012) Dgp71WD is required for the assembly of the acentrosomal meiosis I spindle, and is not a general targeting factor for the gamma-TuRC. Biol Open 1:422–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riparbelli MG, Callaini G, Glover DM, Avides MC (2002) A requirement for the abnormal spindle protein to organise microtubules of the central spindle for cytokinesis in Drosophila. J Cell Sci 115:913–922

    CAS  PubMed  Google Scholar 

  • Ross BD, Malik HS (2014) Genetic conflicts: stronger centromeres win tug-of-war in female meiosis. Curr Biol 24:R966–R968

    Article  CAS  PubMed  Google Scholar 

  • Sampath SC, Ohi R, Leismann O, Salic A, Pozniakovski A, Funabiki H (2004) The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118:187–202

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Huertas C, Luders J (2015) The augmin connection in the geometry of microtubule networks. Curr Biol 25:R294–R299

    Article  CAS  PubMed  Google Scholar 

  • Schindler K, Davydenko O, Fram B, Lampson MA, Schultz RM (2012) Maternally recruited aurora C kinase is more stable than Aurora B to support mouse oocyte maturation and early development. Proc Natl Acad Sci U S A 109:E2215–E2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuh M, Ellenberg J (2007) Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130:484–498

    Article  CAS  PubMed  Google Scholar 

  • Schumacher JM, Golden A, Donovan PJ (1998) AIR-2: an Aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos. J Cell Biol 143:1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebestova J, Danylevska A, Novakova L, Kubelka M, Anger M (2012) Lack of response to unaligned chromosomes in mammalian female gametes. Cell Cycle 11:3011–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segbert C, Barkus R, Powers J, Strome S, Saxton WM, Bossinger O (2003) KLP-18, a Klp2 kinesin, is required for assembly of acentrosomal meiotic spindles in Caenorhabditis elegans. Mol Biol Cell 14:4458–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severson AF, von Dassow G, Bowerman B (2016) Oocyte meiotic spindle assembly and function. Curr Top Dev Biol 116:65–98

    Article  PubMed  Google Scholar 

  • Sharif B, Na J, Lykke-Hartmann K, McLaughlin SH, Laue E, Glover DM, Zernicka-Goetz M (2010) The chromosome passenger complex is required for fidelity of chromosome transmission and cytokinesis in meiosis of mouse oocytes. J Cell Sci 123:4292–4300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuda K, Schindler K, Ma J, Schultz RM, Donovan PJ (2009) Aurora kinase B modulates chromosome alignment in mouse oocytes. Mol Reprod Dev 76:1094–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solc P, Baran V, Mayer A, Bohmova T, Panenkova-Havlova G, Saskova A, Schultz RM, Motlik J (2012) Aurora kinase A drives MTOC biogenesis but does not trigger resumption of meiosis in mouse oocytes matured in vivo. Biol Reprod 87:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun QY, Lai L, Wu GM, Park KW, Day BN, Prather RS, Schatten H (2001) Microtubule assembly after treatment of pig oocytes with taxol: correlation with chromosomes, gamma-tubulin, and MAP kinase. Mol Reprod Dev 60:481–490

    Article  CAS  PubMed  Google Scholar 

  • Szollosi D, Calarco P, Donahue RP (1972) Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J Cell Sci 11:521–541

    CAS  PubMed  Google Scholar 

  • Tao L, Fasulo B, Warecki B, Sullivan W (2016) Tum/RacGAP functions as a switch activating the Pav/kinesin-6 motor. Nat Commun 7:11182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theurkauf WE, Hawley RS (1992) Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J Cell Biol 116:1167–1180

    Article  CAS  PubMed  Google Scholar 

  • Theurkauf WE, Smiley S, Wong ML, Alberts BM (1992) Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 115:923–936

    CAS  PubMed  Google Scholar 

  • Torosantucci L, De Luca M, Guarguaglini G, Lavia P, Degrassi F (2008) Localized RanGTP accumulation promotes microtubule nucleation at kinetochores in somatic mammalian cells. Mol Biol Cell 19:1873–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng BS, Tan L, Kapoor TM, Funabiki H (2010) Dual detection of chromosomes and microtubules by the chromosomal passenger complex drives spindle assembly. Dev Cell 18:903–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Voet M, Lorson MA, Srinivasan DG, Bennett KL, van den Heuvel S (2009) C. elegans mitotic cyclins have distinct as well as overlapping functions in chromosome segregation. Cell Cycle 8:4091–4102

    Article  PubMed  PubMed Central  Google Scholar 

  • Wadsworth P, Khodjakov A (2004) E pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol 14:413–419

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Dai J, Daum JR, Niedzialkowska E, Banerjee B, Stukenberg PT, Gorbsky GJ, Higgins JM (2010) Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330:231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe Y (2012) Geometry and force behind kinetochore orientation: lessons from meiosis. Nat Rev Mol Cell Biol 13:370–382

    Article  CAS  PubMed  Google Scholar 

  • Wignall SM, Villeneuve AM (2009) Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis. Nat Cell Biol 11:839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilde A, Zheng Y (1999) Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284:1359–1362

    Article  CAS  PubMed  Google Scholar 

  • Wolff ID, Tran MV, Mullen TJ, Villeneuve AM, Wignall SM (2016) Assembly of C. elegans acentrosomal spindles occurs without evident MTOCs and requires microtubule sorting by KLP-18/kinesin-12 and MESP-1. Mol Biol Cell.

  • Wollman R, Cytrynbaum EN, Jones JT, Meyer T, Scholey JM, Mogilner A (2005) Efficient chromosome capture requires a bias in the ‘search-and-capture’ process during mitotic-spindle assembly. Curr Biol 15:828–832

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi Y, Honda T, Tanno Y, Watanabe Y (2010) Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330:239–243

    Article  CAS  PubMed  Google Scholar 

  • Yang JW, Lei ZL, Miao YL, Huang JC, Shi LH, Ouyang YC, Sun QY, Chen DY (2007) Spindle assembly in the absence of chromosomes in mouse oocytes. Reproduction 134:731–738

    Article  CAS  PubMed  Google Scholar 

  • Yang KT, Li SK, Chang CC, Tang CJ, Lin YN, Lee SC, Tang TK (2010) Aurora-C kinase deficiency causes cytokinesis failure in meiosis I and production of large polyploid oocytes in mice. Mol Biol Cell 21:2371–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye AA, Deretic J, Hoel CM, Hinman AW, Cimini D, Welburn JP, Maresca TJ (2015) Aurora A kinase contributes to a pole-based error correction pathway. Curr Biol 25:1842–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Kaido M, Kitajima TS (2015) Inherent instability of correct kinetochore-microtubule attachments during meiosis I in oocytes. Dev Cell.

Download references

Acknowledgements

We thank the members of the McKim and Schindler labs for discussions and comments on the manuscript and Christian Lehner and two anonymous reviewers for suggestions leading to significant improvements in the manuscript. We apologize to the many authors whose papers we were not able to cite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim S. McKim.

Ethics declarations

Conflict of interest

Writing of this review was supported by National Institutes of Health grants GM101955 to KMcK and GM112801 to KS. The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radford, S.J., Nguyen, A.L., Schindler, K. et al. The chromosomal basis of meiotic acentrosomal spindle assembly and function in oocytes. Chromosoma 126, 351–364 (2017). https://doi.org/10.1007/s00412-016-0618-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-016-0618-1

Keywords

Navigation