Skip to main content

Advertisement

Log in

Neuroimaging methods applied in Parkinson’s disease

  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract.

Radiotracer methods provide regional in vivo quantified information about specific biochemical activities in brain tissue. The understanding of the principles governing radiotracer uptake into brain tissue determines the potential value of these tracers in assessing pathophysiology of brain diseases. Too often a reductionist view of images is taken to directly point to clinical features or even diagnoses of brain diseases. Parkinson’s disease like many other neurodegenerative brain diseases is a multisystem disorder of considerable biological and clinical complexity while the information given by regional cerebral tracer uptake points to a momentary biochemical local tissue feature. Examples applying to the well-known dopaminergic tracers are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonini A, Leenders KL, Vontobel P, Maguire RP, Missimer J, Psylla M, Gunther I (1997) Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain 120(Pt 12):2187–2195

    Article  PubMed  Google Scholar 

  2. Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AG, Wolters EC, van Royen EA (1997) [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62(2):133–140

    CAS  PubMed  Google Scholar 

  3. Drozdzik M, Bialecka M, Mysliwiec K, Honczarenko K, Stankiewicz J, Sych Z (2003) Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson’s disease. Pharmacogenetics 13(5):259–263

    Article  CAS  PubMed  Google Scholar 

  4. Hoshi H, Kuwabara H, Leger G, Cumming P, Guttman M, Gjedde A (1993) 6-[18F]fluoro-L-dopa metabolism in living human brain: a comparison of six analytical methods. J Cereb Blood Flow Metab 13(1):57–69

    CAS  PubMed  Google Scholar 

  5. Innis RB, Seibyl JP, Scanley BE, Laruelle M, Abi-Dargham A, Wallace E, Baldwin RM, Zea-Ponce Y, Zoghbi S, Wang S, et al. (1993) Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson disease. Proc Natl Acad Sci USA 90(24):11965–11969

    CAS  PubMed  Google Scholar 

  6. Ishikawa T, Dhawan V, Kazumata K, Chaly T, Mandel F, Neumeyer J, Margouleff C, Babchyck B, Zanzi I, Eidelberg D (1996) Comparative nigrostriatal dopaminergic imaging with iodine-123-beta CIT-FP/SPECT and fluorine-18-FDOPA/PET. J Nucl Med 37(11):1760–1765

    CAS  PubMed  Google Scholar 

  7. Leenders KL, Palmer AJ, Quinn N, Clark JC, Firnau G, Garnett ES, Nahmias C, Jones T, Marsden CD (1986) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 49(8):853–860

    CAS  PubMed  Google Scholar 

  8. Leenders KL, Salmon EP, Tyrrell P, Perani D, Brooks DJ, Sager H, Jones T, Marsden CD, Frackowiak RS (1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 47(12):1290–1298

    CAS  PubMed  Google Scholar 

  9. Marek K, Innis R, van Dyck C, Fussell B, Early M, Eberly S, Oakes D, Seibyl J (2001) [123I]beta-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology 57(11):2089–2094

    CAS  PubMed  Google Scholar 

  10. Marek K, Jennings D, Seibyl J (2002) Do dopamine agonists or levodopa modify Parkinson’s disease progression? Eur J Neurol 9(Suppl 3):15–22

    Article  Google Scholar 

  11. Melega WP, Luxen A, Perlmutter MM, Nissenson CH, Phelps ME, Barrio JR (1990) Comparative in vivo metabolism of 6-[18F]fluoro-L-dopa and [3H]L-dopa in rats. Biochem Pharmacol 39(12):1853–1860

    Article  CAS  PubMed  Google Scholar 

  12. Nurmi E, Bergman J, Eskola O, Solin O, Hinkka SM, Sonninen P, Rinne JO (2000) Reproducibility and effect of levodopa on dopamine transporter function measurements: a [18F]CFT PET study. J Cereb Blood Flow Metab 20(11):1604–1609

    Article  CAS  PubMed  Google Scholar 

  13. Nurmi E, Ruottinen HM, Bergman J, Haaparanta M, Solin O, Sonninen P, Rinne JO (2001) Rate of progression in Parkinson’s disease: a 6-[18F]fluoro-L-dopa PET study. Mov Disord 16(4):608–615

    Article  CAS  PubMed  Google Scholar 

  14. Sorenson JA, Phelps ME (1987) Physics in Nuclear Medicine. Philadelphia: WB Saunders Company

  15. Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, Lang AE, Rascol O, Ribeiro MJ, Remy P, Poewe WH, Hauser RA, Brooks DJ; REAL-PET Study Group (2003) Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REALPET study. Ann Neurol 54(1):93–101

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus L. Leenders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leenders, K.L. Neuroimaging methods applied in Parkinson’s disease. J Neurol 251 (Suppl 6), vi7–vi12 (2004). https://doi.org/10.1007/s00415-004-1603-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-004-1603-9

Key words

Navigation