Skip to main content
Log in

Brain metabolites in definite amyotrophic lateral sclerosis

A longitudinal proton magnetic resonance spectroscopy study

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Biomarkers beyond clinical assessment are needed in patients who suffer from amyotrophic lateral sclerosis (ALS). Here, single-voxel proton magnetic resonance spectroscopy (1H MRS) of the gray matter of the motor cortex and the white matter including the pyramidal tracts was used to investigate concentrations of N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myoinositol, glutamate, and glutamine in patients with definite ALS in a longitudinal design (three measurements at study inclusion, after 3 and 6 months). A volume-corrected analysis of gray and white matter fractions within the volumes of interest (VOI) was performed for the identification of the absolute metabolite concentrations. The patient group showed a significant decline of the compound NAA over time in the motor cortex areas both of the clinically more and less affected hemisphere between first measurement and month 6 and for the less affected side additionally between first measurement and month 3. For the NAA/(Cr + Cho) ratio, significant decline in the less affected hemisphere was observed from the first measurement to month 3 and to month 6 as well as from month 3 to month 6. In contrast, neither NAA nor the NAA/(Cr + Cho) ratios in the white matter areas showed any significant alterations. All other compounds showed no significant changes over time. In summary, the longitudinal changes of cortical metabolite concentrations in the course of ALS could be assessed by optimized 1H MRS techniques at group level, so that 1H MRS parameters, in particular volume-corrected values of NAA in the clinically less affected hemisphere, seem to have the potential to serve as a surrogate marker for monitoring ALS disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karitzky J, Ludolph AC (2001) Imaging and neurochemical markers for diagnosis and disease progression in ALS. J Neurol Sci 191:35–1

    Article  PubMed  CAS  Google Scholar 

  2. Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–99

    Article  PubMed  CAS  Google Scholar 

  3. Chan S, Kaufmann P, Shungu DC, Mitsumoto H (2003) Amyotrophic lateral sclerosis and primary lateral sclerosis: evidence-based diagnostic evaluation of the upper motor neuron. Neuroimag Clin N Am 13:307–26

    Article  Google Scholar 

  4. Cheung G, Gawel MJ, Cooper PW, Farb RI, Ang LC, Gawal MJ (1995) Amyotrophic lateral sclerosis: correlation of clinical and MR imaging findings. Radiology 194:263–70

    PubMed  CAS  Google Scholar 

  5. Comi G, Rovaris M, Leocani L (1999) Neuroimaging in amyotrophic lateral sclerosis. Eur J Neurol 6:629–37

    Article  PubMed  CAS  Google Scholar 

  6. Hofmann E, Ochs G, Pelzl A, Warmuth-Metz M (1998) The corticospinal tract in amyotrophic lateral sclerosis: an MRI study. Neuroradiology 40:71–5

    Article  PubMed  CAS  Google Scholar 

  7. Goodin DS, Rowley HA, Olney RK (1988) Magnetic resonance imaging in amyotrophic lateral sclerosis. Ann Neurol 23:418–20

    Article  PubMed  CAS  Google Scholar 

  8. Terao S, Sobue G, Yasuda T, Kachi T, Takahashi M, Mitsuma T (1995) Magnetic resonance imaging of the corticospinal tracts in amyotrophic lateral sclerosis. J Neurol Sci 133:66–2

    Article  PubMed  CAS  Google Scholar 

  9. Thorpe JW, Moseley IF, Hawkes CH, MacManus DG, McDonald WI, Miller DH (1996) Brain and spinal cord MRI in motor neuron disease. J Neurol Neurosurg Psychiatry 61:314–17

    Article  PubMed  CAS  Google Scholar 

  10. Waragai M, Shinotoh H, Hayashi M, Hattori T (1997) High signal intensity on T1 weighted MRI of the anterolateral column of the spinal cord in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 62:88–1

    Article  PubMed  CAS  Google Scholar 

  11. Sobel DF, Gallen CC, Schwartz BJ, Waltz TA, Copeland B, Yamada S, Hirschkoff EC, Bloom FE (1993) Locating the central sulcus: comparison of MR anatomic and magnetoencephalographic functional methods. AJNR Am J Neuroradiol 14:915–25

    PubMed  CAS  Google Scholar 

  12. Miller BL (1991) A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomed 4:47–2

    Article  PubMed  CAS  Google Scholar 

  13. Bowen BC, Pattany PM, Bradley WG, Murdoch JB, Rotta F, Younis AA, Duncan RC, Quencer RM (2000) MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 21:647–58

    PubMed  CAS  Google Scholar 

  14. Gredal O, Rosenbaum S, Topp S, Karlsborg M, Strange P, Werdelin L (1997) Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy. Neurology 48:878–81

    PubMed  CAS  Google Scholar 

  15. Jones AP, Gunawardena WJ, Coutinho CM, Gatt JA, Shaw IC, Mitchell JD (1995) Preliminary results of proton magnetic resonance spectroscopy in motor neurone disease (amyotrophic lateral sclerosis). J Neurol Sci 129(Suppl):85–9

    Article  PubMed  Google Scholar 

  16. Kalra S, Arnold DL (2004) ALS surrogate markers. MRS. Amyotroph Lateral Scler Other Motor Neuron Disord Suppl 1:111–14. Review

    Article  Google Scholar 

  17. Pioro EP, Antel JP, Cashman NR, Arnold DL (1994) Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo. Neurology 44:1933–938

    PubMed  CAS  Google Scholar 

  18. Chan S, Shungu DC, Douglas-Akinwande A, Lange DJ, Rowland LP (1999) Motor neuron diseases: comparison of single-voxel proton MR spectroscopy of the motor cortex with MR imaging of the brain. Radiology 212:763–69

    PubMed  CAS  Google Scholar 

  19. Block W, Karitzky J, Traber F, Pohl C, Keller E, Mundegar RR, Lamerichs R, Rink H, Ries F, Schild HH, Jerusalem F (1998) Proton magnetic resonance spectroscopy of the primary motor cortex in patients with motor neuron disease: subgroup analysis an follow-up measures. Arch Neurology 55:931–36

    Article  CAS  Google Scholar 

  20. Ellis CM, Simmons A, Andrews C, Dawson JM, Williams SCR, Leigh PN (1998) A proton magnetic resonance spectroscopy study in ALS. Neurology 51:1104–109

    PubMed  CAS  Google Scholar 

  21. Kalra S, Cashman NR, Caramanos Z, Genge A, Arnold DL (2003) Gabapentin therapy for amyotrophic lateral sclerosis: lack of improvement in neuronal integrity shown by MR spectroscopy. AJNR Am J Neuroradiol 24:476–80

    PubMed  Google Scholar 

  22. Suhy J, Miller RG, Rule R, Schuff N, Licht J, Dronsky V, Gelinas D, Maudsley AA, Weiner MW (2002) Early detection and longitudinal changes in amyotrophic lateral sclerosis by (1)H MRSI. Neurology 58:773–79

    PubMed  CAS  Google Scholar 

  23. Rule RR, Suhy J, Schuff N, Gelinas DF, Miller RG, Weiner MW (2004) Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study. Amyotroph Lateral Scler Other Motor Neuron Disord 5:141–49

    Article  PubMed  CAS  Google Scholar 

  24. The ALS CNTF treatment study (ACTS) Phase I-II study group (1996) The amyotrophic lateral sclerosis functional rating scale. Assessment of activities of daily living in patients with amyotrophic lateral sclerosis. Arch Neurol 53:141–47

    Google Scholar 

  25. Klose U (1990) In vivo proton spectroscopy in the presence of eddy currents. Magn Reson Med 14:26–0

    Article  PubMed  CAS  Google Scholar 

  26. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–79

    Article  PubMed  CAS  Google Scholar 

  27. Ethofer T, Seeger U, Klose U, Erb M, Kardatzki B, Kraft E, Landwehrmeyer GB, Grodd W, Storch A (2004) Proton MR spectroscopy in succinic semialdehyde dehydrogenase deficiency. Neurology 62:1016–018

    PubMed  CAS  Google Scholar 

  28. Pioro EP, Majors AW, Mitsumoto H, Nelson DR, Ng TC (1999) 1H-MRS evidence of neurodegeneration and excess glutamate + glutamine in ALS medulla. Neurology 53:71–9

    PubMed  CAS  Google Scholar 

  29. Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–89

    PubMed  CAS  Google Scholar 

  30. Williams SCR (1992) In vivo proton spectroscopy. In: NMR basic principles and progress, vol. 28. Berlin, Springer, pp 55–0

  31. Kassubek J, Unrath A, Huppertz HJ, Lule D, Ethofer T, Sperfeld AD, Ludolph AC (2005) Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI. Amyotroph Lateral Scler Other Motor Neuron Disord 6:213–20

    Article  PubMed  Google Scholar 

  32. Kalra S, Hanstock CF, Martin WRW (2006) Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy. Arch Neurol 63:1144–148

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kassubek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unrath, A., Ludolph, A.C. & Kassubek, J. Brain metabolites in definite amyotrophic lateral sclerosis. J Neurol 254, 1099–1106 (2007). https://doi.org/10.1007/s00415-006-0495-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-006-0495-2

Key words

Navigation