Skip to main content

Advertisement

Log in

MicroRNA-200 is commonly repressed in conjunctival MALT lymphoma, and targets cyclin E2

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Aberrant microRNA expression is implicated in cancer initiation and progression. We sought to identify dysregulated miRNAs in conjunctival mucosa-associated lymphoid tissue (MALT) lymphoma, and investigated their biological significance.

Methods

The profiles of miRNAs in conjunctival MALT lymphoma and normal adjacent tissues were investigated by microRNA microarray of four pairs of surgically removed conjunctival MALT lymphoma tissues and matched controls. The results of microarray were further confirmed in 14 paired conjunctival MALT lymphoma samples (including the former four pairs) using quantitative RT-PCR. The functional effect of miR-200 was examined further. A luciferase reporter assay was performed to confirm the predicted target.

Results

The microarray results revealed upregulated miR-150/155, and downregulated miR-184, miR-200a, b, c, and miR-205. These findings were confirmed by quantitative RT-PCR. Targetscan analysis suggested cyclin E2 as potential target of miR-200a, b, c. Luciferase reporter assay using vectors containing the 3’UTR of cyclin E2 showed that miR-200a, b, c could suppress luciferase activities. RT-PCR and immunoblotting studies revealed that overexpression of miR-200a, b, c reduced the mRNA and protein levels of cyclin E2 respectively.

Conclusions

We demonstrated that miRNAs were dysregulated in conjunctival MALT lymphoma, and dysregulation of the miR-200 family could be involved in the pathogenesis and progression of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  2. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA (2003) Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229:838–846

    Article  PubMed  Google Scholar 

  3. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    Article  PubMed  CAS  Google Scholar 

  4. Negrini M, Nicoloso MS, Calin GA (2009) MicroRNAs and cancer—new paradigms in molecular oncology. Curr Opin Cell Biol 21:470–479

    Article  PubMed  CAS  Google Scholar 

  5. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    Article  PubMed  CAS  Google Scholar 

  6. Hardman-Lea S, Kerr-Muir M, Wotherspoon AC, Green WT, Morell A, Isaacson PG (1994) Mucosa-associated lymphoid tissue lymphoma of the conjunctiva. Arch Ophthalmol 112:1207–1212

    Article  PubMed  CAS  Google Scholar 

  7. Coupland SE, Krause L, Delecluse HJ, Anagnostopoule I, Foss HD, Hummel M, Bornfeld N, Lee WR, Stein H (1998) Lymphoproliferative lesions of the ocular adnexa: analysis of 112 cases. Ophthalmology 105:1430–1441

    Article  PubMed  CAS  Google Scholar 

  8. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102:3627–3632

    Article  PubMed  CAS  Google Scholar 

  9. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, Müller-Hermelink HK, Campo E, Braziel RM, Jaffe ES, Pan Z, Farinha P, Smith LM, Falini B, Banham AH, Rosenwald A, Staudt LM, Connors JM, Armitage JO, Chan WC (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103:275–282

    Article  PubMed  CAS  Google Scholar 

  10. Lawrie CH, Soneji S, Marafioti T, Cooper CD, Palazzo S, Paterson JC, Cattan H, Enver T, Mager R, Boultwood J, Wainscoat JS, Hatton CS (2007) MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 121:1156–1161

    Article  PubMed  CAS  Google Scholar 

  11. Lum AM, Wang BB, Li L, Channa N, Bartha G, Wabl M (2007) Retroviral activation of the mir-106a microRNA cistron in T lymphoma. Retrovirology 4:5

    Article  PubMed  Google Scholar 

  12. Rinaldi A, Poretti G, Kwee I, Zucca E, Catapano CV, Tibiletti MG, Bertoni F (2007) Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma 48:410–412

    Article  PubMed  Google Scholar 

  13. Wang CL, Wang BB, Bartha G, Li L, Channa N, Klinger M, Killeen N, Wabl M (2006) Activation of an oncogenic microRNA cistron by provirus integration. Proc Natl Acad Sci U S A 103:18680–18684

    Article  PubMed  CAS  Google Scholar 

  14. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, vanden Berg A (2005) BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207:243–249

    Article  PubMed  CAS  Google Scholar 

  15. Dykxhoorn DM (2010) MicroRNAs and metastasis: little RNAs go a long way. Cancer Res 70:6401–6406

    Article  PubMed  CAS  Google Scholar 

  16. Korpal M, Kang Y (2008) The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol 5:115–119

    Article  PubMed  CAS  Google Scholar 

  17. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907

    Article  PubMed  CAS  Google Scholar 

  18. Cochrane DR, Howe EN, Spoelstra NS, Richer JK (2010) Loss of miR-200c: a marker of aggressiveness and chemoresistance in female reproductive cancers. J Oncol 2010:821717

    PubMed  Google Scholar 

  19. Shinozaki A, Sakatani T, Ushiku T, Hino R, Isogai M, Ishikawa S, Uozaki H, Takada K, Fukayama M (2010) Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res 70:4719–4727

    Article  PubMed  CAS  Google Scholar 

  20. Yu J, Ohuchida K, Mizumoto K, Sato N, Kayashima T, Fujita H, Nakata K, Tanaka M (2010) MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol Cancer 9:169

    Article  PubMed  Google Scholar 

  21. Jaffe ES (2009) The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology Am Soc Hematol Educ Program:523–531

  22. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  Google Scholar 

  23. Gao X, Gulari E, Zhou X (2004) In situ synthesis of oligonucleotide microarrays. Biopolymers 73:579–596

    Article  PubMed  CAS  Google Scholar 

  24. Zhu Q, Hong A, Sheng N, Zhang X, Matejko A, Jun KY, Srivannavit O, Gulari E, Gao X, Zhou X (2007) microParaflo biochip for nucleic acid and protein analysis. Methods Mol Biol 382:287–312

    Article  PubMed  CAS  Google Scholar 

  25. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    Article  PubMed  CAS  Google Scholar 

  26. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  27. Stommel JM, Wahl GM (2004) Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J 23:1547–1556

    Article  PubMed  CAS  Google Scholar 

  28. Cui B, Johnson SP, Bullock N, Ali-Osman F, Bigner DD, Friedman HS (2009) Bifunctional DNA alkylator 1,3-bis(2-chloroethyl)-1-nitrosourea activates the ATR-Chk1 pathway independently of the mismatch repair pathway. Mol Pharmacol 75:1356–1363

    Article  PubMed  CAS  Google Scholar 

  29. Coupland SE, White VA, Rootman J, Damato B, Finger PT (2009) A TNM-based staging system for ocular adnexal lymphomas. Arch Path Lab Med 133:1262–1267

    PubMed  Google Scholar 

  30. Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M (1971) Report of the Committee on Hodgkin's Disease Staging Classification. Cancer Res 31:1860–1861

    PubMed  CAS  Google Scholar 

  31. Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8:843–852

    Article  PubMed  CAS  Google Scholar 

  32. Moroy T, Geisen C (2004) Cyclin E. Int J Biochem Cell Biol 36:1424–1439

    Article  PubMed  CAS  Google Scholar 

  33. Sjö LD, Ralfkiaer E, Prause JU, Petersen JH, Madsen J, Pedersen NT, Heegaard S (2008) Increasing incidence of ophthalmic lymphoma in Denmark from 1980 to 2005. Invest Ophthalmol Vis Sci 49:3283–3288

    Article  PubMed  Google Scholar 

  34. Decaudin D, de Cremoux P, Vincent-Salomon A, Dendale R, Rouic LL (2006) Ocular adnexal lymphoma: a review of clinicopathologic features and treatment options. Blood 108:1451–1460

    Article  PubMed  CAS  Google Scholar 

  35. Shields CL, Shields JA (2004) Tumors of the conjunctiva and cornea. Surv Ophthalmol 49:3–24

    Article  PubMed  Google Scholar 

  36. Shields CL, Shields JA, Carvalho C, Rundle P, Smith AF (2001) Conjunctival lymphoid tumors: clinical analysis of 117 cases and relationship to systemic lymphoma. Ophthalmology 108:979–984

    Article  PubMed  CAS  Google Scholar 

  37. Zullo A, Hassan C, Cristofari F, Perri F, Morini S (2010) Gastric low-grade mucosal-associated lymphoid tissue-lymphoma: Helicobacter pylori and beyond. World J Gastrointest Oncol 2:181–186

    Article  PubMed  Google Scholar 

  38. Stolte M (1992) Helicobacter pylore gastritis and gastric MALT-lymphoma. Lancet 339:745–746

    Article  PubMed  CAS  Google Scholar 

  39. Bertoni F, Zucca E (2005) State-of-the-art therapeutics: marginal-zone lymphoma. J Clin Oncol 23:6415–6420

    Article  PubMed  CAS  Google Scholar 

  40. Culpin RE, Proctor SJ, Angus B, Crosier S, Anderson JJ, Mainou-Fowler T (2010) A 9 series microRNA signature differentiates between germinal centre and activated B-cell-like diffuse large B-cell lymphoma cell lines. Int J Oncol 37:367–376

    PubMed  CAS  Google Scholar 

  41. Lawrie CH, Chi J, Taylor S, Tramonti D, Ballabio E, Palazzo S, Saunders NJ, Pezzella F, Boultwood J, Wainscoat JS, Hatton CS (2009) Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma. J Cell Mol Med 13:1248–1260

    Article  PubMed  CAS  Google Scholar 

  42. Craig VJ, Cogliatti SB, Rehrauer H, Wündisch T, Müller A (2011) Epigenetic silencing of MicroRNA-203 dysregulates ABL1 expression and drives helicobacter-associated gastric lymphomagenesis. Cancer Res 71:3616–3624

    Article  PubMed  CAS  Google Scholar 

  43. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  PubMed  CAS  Google Scholar 

  44. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell'Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101:11755–11760

    Article  PubMed  CAS  Google Scholar 

Download references

Potential conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruili Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J., Liu, X., Cheng, J. et al. MicroRNA-200 is commonly repressed in conjunctival MALT lymphoma, and targets cyclin E2. Graefes Arch Clin Exp Ophthalmol 250, 523–531 (2012). https://doi.org/10.1007/s00417-011-1885-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1885-4

Keywords

Navigation