Skip to main content

Advertisement

Log in

Exploring choriocapillaris under reticular pseudodrusen using OCT-Angiography

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate if choriocapillaris (CC) vessel density and CC decorrelation signal index are compromised in eyes with reticular pseudodrusen (RPD) using optical coherence tomography angiography (OCT-A).

Methods

Decorrelation values in OCT-A CC images of 20 RPD patients were measured in the outer superior and the outer inferior sector of the EDTRS grid and compared to age-matched healthy controls. CC vessel density and CC decorrelation signal index were measured within a 30 μm and a 10 μm OCT-A CC slab. CC data were correlated to number of RPD lesions, predominantly present RPD stage, predominantly present RPD type, retinal area affected by RPD and choroidal thickness (CT).

Results

CC vessel density and CC decorrelation signal index decreased in correlation to advancing age in healthy subjects particularly in subjects older than 60 years (CC vessel density: 30 μm: p=0.0019; 10 μm: p=0.0014; CC decorrelation signal index: 30 μm: p=0.0005; 10 μm: p=0.0003). In the RPD group, CC vessel density (outer superior sector, 10 μm: 98.299) and CC decorrelation signal index (89.07) were significantly reduced compared to controls (99.203, p=0.0002; 98.09, p=0.0010). The number of RPD lesions was correlated to a reduced CC vessel density (30 μm: p=0.0355) but not to changes in CC decorrelation signal index. No correlations were found between CC parameters and either RPD stage, RPD type, size of RPD affected area or CT.

Conclusions

OCT-A reveals a distinct reduction in CC vessel density and CC decorrelation signal index in eyes affected by RPD, which emphasizes the relevance of the CC layer in RPD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zweifel SA, Imamura Y, Spaide TC et al (2010) Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. Ophthalmology 117:1775–1781

    Article  PubMed  Google Scholar 

  2. Klein R, Meuer SM, Knudtson MD et al (2008) The epidemiology of retinal reticular drusen. Am J Ophthalmol 145:317–326

    Article  PubMed  Google Scholar 

  3. Alten F, Clemens CR, Milojcic C et al (2012) Subretinal drusenoid deposits associated with pigment epithelium detachment in age-related macular degeneration. Retina 32:1727–1732

    Article  PubMed  Google Scholar 

  4. Cohen SY, Dubois L, Tadayoni R et al (2007) Prevalence of reticular pseudodrusen in age-related macular degeneration with newly diagnosed choroidal neovascularisation. Br J Ophthalmol 91:354–359

    Article  CAS  PubMed  Google Scholar 

  5. Finger RP, Wu Z, Luu CD et al (2014) Reticular pseudodrusen: a risk factor for geographic atrophy in fellow eyes of individuals with unilateral choroidal neovascularization. Ophthalmology 121:1252–1256

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marsiglia M, Boddu S, Bearelly S et al (2013) Association between geographic atrophy progression and reticular pseudodrusen in eyes with dry age-related macular degeneration. Invest Ophthalmol Vis Sci 54:7362–7369

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schmitz-Valckenberg S, Alten F, Steinberg JS, Geographic Atrophy Progression (GAP) Study Group et al (2011) Reticular drusen associated with geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 52:5009–5015

    Article  PubMed  Google Scholar 

  8. Ooto S, Suzuki M, Vongkulsiri S et al (2015) Multimodal visual function testing in eyes with nonexudative age-related macular degeneration. Retina 35:1726–1734

    Article  PubMed  Google Scholar 

  9. Querques G, Massamba N, Srour M et al (2014) Impact of reticular pseudodrusen on macular function. Retina 34:321–329

    Article  PubMed  Google Scholar 

  10. Ooto S, Ellabban AA, Ueda-Arakawa N et al (2013) Reduction of Retinal Sensitivity in Eyes With Reticular Pseudodrusen. Am J Ophthalmol 156:1184–1191

    Article  PubMed  Google Scholar 

  11. Forte R, Cennamo G, de Crecchio G et al (2014) Microperimetry of subretinal drusenoid deposits. Ophthalmic Res 51:32–36

    Article  PubMed  Google Scholar 

  12. Steinberg JS, Fitzke FW, Fimmers R et al (2015) Scotopic and Photopic Microperimetry in Patients With Reticular Drusen and Age-Related Macular Degeneration. JAMA Ophthalmol 133:690–697

    Article  PubMed  Google Scholar 

  13. Alten F, Heiduschka P, Clemens CR, Eter N (2012) Multifocal electroretinography in eyes with reticular pseudodrusen. Invest Ophthalmol Vis Sci 53:6263–6270

    Article  PubMed  Google Scholar 

  14. Alten, Heiduschka P, Clemens CR, Eter N (2014) Longitudinal structure / function analysis in reticular pseudodrusen. Invest Ophthalmol Vis Sci 55:6073–6081

    Article  PubMed  Google Scholar 

  15. Flamendorf J, Agrón E, Wong WT et al (2015) Impairments in Dark Adaptation Are Associated with Age-Related Macular Degeneration Severity and Reticular Pseudodrusen. Ophthalmology 122:2053–2062

    Article  PubMed  PubMed Central  Google Scholar 

  16. Curcio CA, Messinger JD, Sloan KR et al (2013) Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model. Retina 33:265–276

    Article  PubMed  Google Scholar 

  17. Gliem M, Müller PL, Mangold E et al (2015) Reticular Pseudodrusen in Sorsby Fundus Dystrophy. Ophthalmology 122:1555–1562

    Article  PubMed  Google Scholar 

  18. Gliem M, Hendig D, Finger RP et al (2015) Reticular pseudodrusen associated with a diseased bruch membrane in pseudoxanthoma elasticum. JAMA Ophthalmol 133:581–588

    Article  PubMed  Google Scholar 

  19. Zweifel SA, Imamura Y, Freund KB, Spaide RF (2011) Multimodal fundus imaging of pseudoxanthoma elasticum. Retina 31:482–491

    Article  PubMed  Google Scholar 

  20. Sarks JP, Sarks SH, Killingsworth MC (1988) Evolution of Geographic Atrophy of the Retinal-Pigment Epithelium. Eye (Lond) 2:552–577

    Article  Google Scholar 

  21. McLeod DS, Grebe R, Bhutto I et al (2009) Relationship between RPE and Choriocapillaris in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 50:4982–4991

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mullins RE, Johnson MN, Faidley EA et al (2011) Choriocapillaris Vascular Dropout Related to Density of Drusen in Human Eyes with Early Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 52:1606–1612

    Article  PubMed  PubMed Central  Google Scholar 

  23. Biesemeier A, Taubitz T, Julien S et al (2014) Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration. Neurobiol Aging 35:2562–2573

    Article  PubMed  Google Scholar 

  24. Jia Y, Tan O, Tokayer J et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jia Y, Bailey ST, Hwang TS et al (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112:E2395–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sohrab MA, Smith RT, Salehi-Had H et al (2011) Image registration and multimodal imaging of reticular pseudodrusen. Invest Ophthalmol Vis Sci 52:5743–5748

    Article  PubMed  Google Scholar 

  27. Querques G, Querques L, Forte R et al (2012) Choroidal Changes Associated with Reticular Pseudodrusen. Invest Ophthalmol Vis Sci 53:1258–1263

    Article  PubMed  Google Scholar 

  28. Smith RT, Sohrab MA, Busuioc M, Barile G (2009) Reticular macular disease. Am J Ophthalmol 148:733–743

    Article  PubMed  PubMed Central  Google Scholar 

  29. Garg A, Oll M, Yzer S et al (2013) Reticular Pseudodrusen in Early Age-Related Macular Degeneration is Associated with Choroidal Thinning. Invest Ophthalmol Vis Sci 54:7075–7081

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alten F, Clemens CR, Heiduschka P, Eter N (2013) Localized reticular pseudodrusen and their topographic relation to choroidal watershed zones and changes in choroidal volumes. Invest Ophthalmol Vis Sci 54:3250–3257

    Article  PubMed  Google Scholar 

  31. Fujiwara T, Imamura Y, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148:445–450

    Article  PubMed  Google Scholar 

  32. Alten F, Eter N (2015) Current knowledge on reticular pseudodrusen in age-related macular degeneration. Br J Ophthalmol 99:717–722

    Article  CAS  PubMed  Google Scholar 

  33. Ramrattan RS, van der Schaft TL, Mooy CM et al (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35:2857–2864

    CAS  PubMed  Google Scholar 

  34. Pechauer AD, Jia Y, Liu L et al (2015) Optical Coherence Tomography Angiography of Peripapillary Retinal Blood Flow Response to Hyperoxia. Invest Ophthalmol Vis Sci 56:3287–3291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Querques G, Canouï-Poitrine F, Coscas F et al (2012) Analysis of progression of reticular pseudodrusen by spectral domain-optical coherence tomography. Invest Ophthalmol Vis Sci 53:1264–1270

    Article  PubMed  Google Scholar 

  36. Zweifel SA, Spaide RF, Curcio CA et al (2010) Reticular Pseudodrusen Are Subretinal Drusenoid Deposits. Ophthalmology 117:303–312

    Article  PubMed  Google Scholar 

  37. Suzuki M, Sato T, Spaide RF (2014) Pseudodrusen subtypes as delineated by multimodal imaging of the fundus. Am J Ophthalmol 157:1005–1012

    Article  PubMed  Google Scholar 

  38. Schmitz-Valckenberg S, Bindewald-Wittich A, Dolar-Szczasny J et al (2006) Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD. Invest Ophthalmol Vis Sci 47:2648–2654

    Article  PubMed  Google Scholar 

  39. McLeod DS, Lutty GA (1994) High-resolution histologic analysis of the human choroidal vasculature. Invest Ophthalmol Vis Sci 35:3799–3811

    CAS  PubMed  Google Scholar 

  40. Kurokawa K, Sasaki K, Makita S, Hong Y-J, Yasuno Y (2012) Threedimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics. Opt Express 20:22796–22812

    Article  PubMed  Google Scholar 

  41. Braaf B, Vienola KV, Sheehy CK et al (2013) Realtime eye motion correction in phase-resolved OCT angiography with tracking SLO. Biomed Opt Express 4:51–65

    Article  PubMed  Google Scholar 

  42. Choi W, Mohler KJ, Potsaid B et al (2013) Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS ONE 8(12), e81499

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kraus MF, Potsaid B, Mayer MA et al (2012) Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed Opt Express 3:1182–1199

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kraus MF, Liu JJ, Schottenhamml J et al (2014) Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization. Biomed Opt Express 5:2591–2613

    Article  PubMed  PubMed Central  Google Scholar 

  45. Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina 35:2163–80

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Alten.

Ethics declarations

Author Disclosure Information

F. Alten, Bayer; P. Heiduschka, Bayer, Novartis; C.R. Clemens, Heidelberg Engineering, Novartis, Bayer; N. Eter, Heidelberg Engineering, Novartis, Bayer, Sanofi Aventis, Allergan, Bausch and Lomb.

Funding

No funding was received for this research.

Conflict of Interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alten, F., Heiduschka, P., Clemens, C.R. et al. Exploring choriocapillaris under reticular pseudodrusen using OCT-Angiography. Graefes Arch Clin Exp Ophthalmol 254, 2165–2173 (2016). https://doi.org/10.1007/s00417-016-3375-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3375-1

Keywords

Navigation