Skip to main content

Advertisement

Log in

Different foveal schisis patterns in each retinal layer in eyes with hereditary juvenile retinoschisis evaluated by en-face optical coherence tomography

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To analyze the structures of schisis in eyes with hereditary juvenile retinoschisis using en-face optical coherence tomography (OCT) imaging.

Methods

In this retrospective observational study, we reviewed the medical records of patients with hereditary juvenile retinoschisis who underwent comprehensive ophthalmic examinations including swept-source OCT.

Results

OCT images were obtained from 16 eyes of nine boys (mean age ± standard deviation, 10.6 ± 4.0 years). The horizontal OCT images at the fovea showed inner nuclear layer (INL) schisis in one eye (6.3 %), ganglion cell layer (GCL) and INL schisis in 12 eyes (75.0 %), INL and outer plexiform layer (OPL) schisis in two eyes (12.5 %), and GCL, INL, and OPL schisis in one eye (6.3 %). En-face OCT images showed characteristic schisis patterns in each retinal layer, which were represented by multiple hyporeflective holes in the parafoveal region in the GCL, a spoke-like pattern in the foveal region, a reticular pattern in the parafoveal region in the INL, and multiple hyporeflective polygonal cavities with partitions in the OPL.

Conclusions

Our results using en-face OCT imaging clarified different patterns of schisis formation among the GCL, INL, and OPL, which lead to further recognition of structure in hereditary juvenile retinoschisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kellner U, Brummer S, Foerster MH, Wessing A (1990) X-linked congenital retinoschisis. Graefes Arch Clin Exp Ophthalmol 228:432–437

    Article  CAS  PubMed  Google Scholar 

  2. George ND, Yates JR, Moore AT (1995) X linked retinoschisis. Br J Ophthalmol 79:697–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. George ND, Yates JR, Moore AT (1996) Clinical features in affected males with X-linked retinoschisis. Arch Ophthalmol 114:274–280

    Article  CAS  PubMed  Google Scholar 

  4. Sauer CG, Gehrig A, Warneke-Wittstock R, Marquardt A, Ewing CC, Gibson A et al (1997) Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nat Genet 17:164–170

    Article  CAS  PubMed  Google Scholar 

  5. Molday RS, Kellner U, Weber BH (2012) X-linked juvenile retinoschisis: clinical diagnosis, genetic analysis, and molecular mechanisms. Prog Retin Eye Res 31:195–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choma M, Sarunic M, Yang C, Izatt J (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11:2183–2189

    Article  PubMed  Google Scholar 

  7. Gerth C, Zawadzki RJ, Werner JS, Heon E (2008) Retinal morphological changes of patients with X-linked retinoschisis evaluated by Fourier-domain optical coherence tomography. Arch Ophthalmol 126:807–811

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gregori NZ, Berrocal AM, Gregori G, Murray TG, Knighton RW, Flynn HW Jr et al (2009) Macular spectral-domain optical coherence tomography in patients with X-linked retinoschisis. Br J Ophthalmol 93:373–378

    Article  CAS  PubMed  Google Scholar 

  9. Yu J, Ni Y, Keane PA, Jiang C, Wang W, Xu G (2010) Foveomacular schisis in juvenile X-linked retinoschisis: an optical coherence tomography study. Am J Ophthalmol 149(973-978):e972

    Google Scholar 

  10. Liang H, Cid M, Cucu R, Dobre G, Podoleanu A, Pedro J et al (2005) En-face optical coherence tomography — a novel application of non-invasive imaging to art conservation. Opt Express 13:6133–6144

    Article  PubMed  Google Scholar 

  11. Cozzi M, Pagliarini S (2016) Retinoschisis microstructure visualization with En face spectral domain optical coherence tomography. Retina 36:227–228

    Article  PubMed  Google Scholar 

  12. Samara WA, Shahlaee A, Sridhar J, Khan MA, Ho AC (2016) En face optical coherence tomography of bilateral myopic macular retinoschisis. Retina 36:e91–e92

    Article  PubMed  Google Scholar 

  13. Ono S, Takahashi A, Mase T, Nagaoka T, Yoshida A (2016) En face swept-source optical coherence tomographic analysis of X-linked juvenile retinoschisis. Am J Ophthalmol Case Rep 2:30–32

    Article  Google Scholar 

  14. Katagiri S, Yokoi T, Mikami M, Nishina S, Azuma N (2016) Outer retinal deformity detected by optical coherence tomography in eyes with foveal hypoplasia. Graefes Arch Clin Exp Ophthalmol. doi:10.1007/s00417-016-3385-z

    Google Scholar 

  15. Yokoi T, Nishina S, Fukami M, Ogata T, Hosono K, Hotta Y et al (2016) Genotype-phenotype correlation of PAX6 gene mutations in aniridia. Hum Genome Var 3:15052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benhamou N, Massin P, Haouchine B, Erginay A, Gaudric A (2002) Macular retinoschisis in highly myopic eyes. Am J Ophthalmol 133:794–800

    Article  PubMed  Google Scholar 

  17. Gass JD (1999) Muller cell cone, an overlooked part of the anatomy of the fovea centralis: hypotheses concerning its role in the pathogenesis of macular hole and foveomacualr retinoschisis. Arch Ophthalmol 117:821–823

    Article  CAS  PubMed  Google Scholar 

  18. Mooy CM, Van Den Born LI, Baarsma S, Paridaens DA, Kraaijenbrink T, Bergen A et al (2002) Hereditary X-linked juvenile retinoschisis: a review of the role of Muller cells. Arch Ophthalmol 120:979–984

    PubMed  Google Scholar 

  19. Reid SN, Yamashita C, Farber DB (2003) Retinoschisin, a photoreceptor-secreted protein, and its interaction with bipolar and muller cells. J Neurosci 23:6030–6040

    CAS  PubMed  Google Scholar 

  20. Tang J, Rivers MB, Moshfeghi AA, Flynn HW, Chan CC (2010) Pathology of macular foveoschisis associated with degenerative myopia. J Ophthalmol. doi:10.1155/2010/175613

    PubMed  PubMed Central  Google Scholar 

  21. Rashid A, Grossniklaus HE (2014) Update on the pathology of pathological myopia. In: Spaide FR, Ohno-Matsui K, Yannuzzi AL (eds) Pathologic myopia. Springer, New York, NY, pp 83–95

    Chapter  Google Scholar 

  22. Hendrickson A, Possin D, Vajzovic L, Toth CA (2012) Histologic development of the human fovea from midgestation to maturity. Am J Ophthalmol 154(5):767.e2–778.e2

    Article  Google Scholar 

  23. Kafieh R, Rabbani H, Kermani S (2013) A review of algorithms for segmentation of optical coherence tomography from retina. J Med Signals Sens 3:45–60

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the patients for participating in this study. This work was supported by grants from the Ministry of Health, Labour, and Welfare (H24-Nanchi-Ippan-031) and the National Centre for Child Health and Development 25-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Azuma.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

The Institutional Review Board of the National Center for Child Health and Development approved this retrospective observational case series, which adhered to the tenets of the Declaration of Helsinki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Pairs of horizontal optical coherence tomography (OCT) images of each retinal layer from 512 A-scans × 256 B-scans in a 3 × 3-millimeter square. a A randomly selected pair of upper and lower horizontal OCT images corresponding to the holes in the ganglion cell layer (GCL) on en-face OCT clearly show several schisis cavities in the GCL, while the B-scan images do not detect a round expanding schisis cavity (right eye of case 5). b A randomly selected pair of upper and lower horizontal OCT images corresponding to the reticular pattern in the inner nuclear layer (INL) on en-face OCT show similar structures (right eye of case 3). c A randomly selected pair of upper and lower horizontal OCT images corresponding to a spoke-wheel pattern in the INL on en-face OCT show similar structures (right eye of case 6). d A randomly selected pair of upper and lower horizontal OCT images corresponding to polygonal hyporeflective cavities with hyperreflective partitions in the outer plexiform layer on en-face OCT show similar structures (right eye of case 8). ad In each column, yellow dashed lines in the upper panels indicate the position at which the B-scan images in the middle and the lower panels are obtained. The orange arrows in the upper panels indicating the cavity in each en-face OCT image correspond to the orange arrows in the middle panels indicating the cavity in each B-scan image. The yellow arrows in the upper panels indicating the cavity in each en-face OCT image correspond to the yellow arrows in the lower panels indicating the cavity in each B-scan image. (GIF 99 kb)

High Resolution Image (TIF 7849 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida-Uemura, T., Katagiri, S., Yokoi, T. et al. Different foveal schisis patterns in each retinal layer in eyes with hereditary juvenile retinoschisis evaluated by en-face optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 255, 719–723 (2017). https://doi.org/10.1007/s00417-016-3552-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3552-2

Keywords

Navigation