Skip to main content
Log in

Mitochondrial localization of reactive oxygen species by dihydrofluorescein probes

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Mitochondria are the main source of reactive oxygen species (ROS). The aim of this work was to verify the ROS generation in situ in HeLa cells exposed to prooxidants and antioxidants (menadione, tert-butyl hydroperoxide, antimycin A, vitamin E, N-acetyl-l-cysteine, and butylated hydroxytoluene) using the ROS-sensitive probes 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate di-acetomethyl ester (DCDHF) and dihydrofluorescein diacetate (DHF). Mitochondria were counterstained with the potential-sensitive probe tetramethylrhodamine methyl ester perchlorate (TMRM). Both DCDHF and DHF were able to detect the presence of ROS in mitochondria, though with distinct morphological features. DCDHF fluorescence was invariably blurred, smudged, and spread over the cytoplasm surrounding the major mitochondrial clusters. On the contrary, DHF fluorescence was sharp and delineated thin filaments which corresponded in all details to TMRM-stained mitochondria. These data suggest that DCDHF does not reach the mitochondrial matrix but is oxidized by ROS released by mitochondria in the cytosol. On the other hand, DHF enters mitochondria and reacts with ROS released in the matrix. Cytosolic (DCDHF+) ROS but not matrix (DHF+) ROS, were significantly decreased by vitamin E. N-acetyl-l-cysteine was effective in reducing DCDHF and DHF photooxidation in the medium, but was unable to reduce intracellular ROS. ROS generation was accompanied by partial mitochondrial depolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A, B.
Fig. 4.

Similar content being viewed by others

References

  • Barja G (1998) Mitochondrial free radical production and aging in mammals and birds. Ann N Y Acad Sci 854:224–238

    CAS  PubMed  Google Scholar 

  • Beal MF (1999) Mitochondria, NO and neurodegeneration. In: Brown GC, et al (eds) Mitochondria and cell death. Cambridge University Press, Cambridge, pp 43–54

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    CAS  PubMed  Google Scholar 

  • Cassarino DS, Bennett JP Jr (1999) An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res Rev 2975:1–25

    Article  Google Scholar 

  • Chandel NS, Trzyna WC, McClintock DS, Schumacker PT (2000) Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol 165:1013–1021

    CAS  PubMed  Google Scholar 

  • Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101

    Article  CAS  PubMed  Google Scholar 

  • Diaz G, Falchi AM, Gremo F, Isola R, Diana D (2000) Homogenous longitudinal profiles and synchronous fluctuations of mitochondrial transmembrane potential. FEBS Lett 475:218–224

    Article  CAS  PubMed  Google Scholar 

  • Diaz G, Diana A, Falchi AM, Gremo F, Pani A, Batetta B, Dessì S, Isola R (2001) Intra- and intercellular distribution of mitochondrial probes and changes after treatment with MDR modulators. IUBMB Life 51:1–6

    Article  PubMed  Google Scholar 

  • France-Lanord V, Brugg B, Michel PP, Agid Y, Ruberg M (1997) Mitochondrial free radical signal in ceramide-dependent apoptosis: a putative mechanism for neuronal death in Parkinson's disease. J Neurochem 69:1612–1621

    CAS  PubMed  Google Scholar 

  • Fridovich I (1997) Superoxide anion radical (O2 ) superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

    CAS  PubMed  Google Scholar 

  • Gudz T, Eriksson O, Kushnareva Y, Saris NE, Novgorodov S (1997) Effect of buthylhydroxytoluene and related compounds on permeability of the inner mitochondrial membrane. Arch Biochem Biophys 342:143–156

    Article  CAS  PubMed  Google Scholar 

  • Haddad J (2002) Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 14:879–897

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford, pp 267–273

  • Hempel SL, Buettner GR, O'Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′-7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′- dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27:146–159

    Article  CAS  PubMed  Google Scholar 

  • Hockberger PE, Skimina TA, Centonze VE, Lavin C, Chu S, Dadras S, Reddy JK, White J (1999) Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc Natl Acad Sci U S A 96:6255–6260

    Article  CAS  PubMed  Google Scholar 

  • Huser J, Rechenmacher CE, Blatter LA (1998) Imaging the permeability pore transition in single mitochondria. Biophys J 74:2129–2137

    CAS  PubMed  Google Scholar 

  • Khan AU, Wilson T (1995) Reactive oxygen species as cellular messengers. Chem Biol 2:437–445

    CAS  PubMed  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G (1999) Mitochondrial control of apoptosis: an overview. In: Brown GC, et al (eds) Mitochondria and cell death. Cambridge University Press, Cambridge, pp 1–16

  • Lemasters JJ, Qian T, Trost LC, Herman B, Cascio WE, Bradham CA, Brenner DA, Nieminen AL (1999) Confocal microscopy of the mitochondrial permeability transition in necrotic and apoptotic cell death. In: Brown GC, et al (eds) Mitochondria and cell death. Cambridge University Press, Cambridge, pp 205–222

  • Li Y, Zhu H, Trush MA (1999) Detection of mitochondria-derived reactive oxygen species production by the chemilumigenic probes lucigenin and luminol. Biochim Biophys Acta 1428:1–12

    CAS  PubMed  Google Scholar 

  • Liu SS (1997) Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep 17:259–272

    CAS  PubMed  Google Scholar 

  • Liu SS (1999) Cooperation of a 'reactive oxygen cycle' with the Q cycle and the proton cycle in the respiratory chain-superoxide generating and cycling mechanisms in mitochondria. J Bioenerg Biomembr 31:367–376

    Article  CAS  PubMed  Google Scholar 

  • Liu SS, Huang JP (1996) Coexistence of a reactive oxygen cycle with the Q cycle in the respiratory chain. A hypothesis for generating, partitioning, targeting and functioning of superoxide in mitochondria. In: Parker L, et al (eds) Natural antioxidants molecular mechanism and health effects. AOCS Press, Champaign, IL, pp 513–529

  • Loew LM, Tuft RA, Carrington W, Fay FS (1993) Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. Biophys J 65:2396–2407

    CAS  PubMed  Google Scholar 

  • Merad-Boudia M, Nicole A, Santiard-Baron D, Saille C, Ceballos-Pico I (1998) Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease. Biochem Pharmacol 56:645–655

    CAS  PubMed  Google Scholar 

  • Nieminen AL, Byrne AM, Herman B, Lemasters JJ (1997) Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Am J Physiol 272:C1286–C1294

    CAS  PubMed  Google Scholar 

  • Petrat F, Pindiur S, Kirsch M, de Groot H (2003) NAD(P)H, a primary target of 1O2 in mitochondria of intact cells. J Biol Chem 278:3298–3307

    Article  CAS  PubMed  Google Scholar 

  • Rota C, Chignell CF, Mason RP (1999) Evidence for free radical formation during the oxidation of 2′-7′-dichlorofluorescin to the fluorescent dye 2′-7′-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic Biol Med 27:873–881

    Article  CAS  PubMed  Google Scholar 

  • Shea CR, Chen N, Wimberly J, Hasan T (1989) Rhodamine dyes as potential agents for photochemotherapy of cancer in human bladder carcinoma cells. Cancer Res 49:3961–3965

    CAS  PubMed  Google Scholar 

  • Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 91:10771–10778

    CAS  PubMed  Google Scholar 

  • Skulachev VP (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29:169–202

    CAS  PubMed  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Higuchi M, Proske RJ, Oridate N, Hong WK, Lotan R (1999) Implication of mitochondria-derivated reactive oxygen species, cytochrome C and caspase-3 in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. Oncogene 18:6380–6387

    Article  CAS  PubMed  Google Scholar 

  • Thévenod F, Friedmann JM, Katsen AD, Hauser IA (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 275:1887–1896

    PubMed  Google Scholar 

  • Thompson D, Moldeus P (1988) Cytotoxicity of butylated hydroxyanisole and butylated hydroxytoluene in isolated rat hepatocytes. Biochem Pharmacol 37:2201–2207

    Article  CAS  PubMed  Google Scholar 

  • Tsien RY, Waggoner A (1995) Fluorophores for confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy. Plenum, New York, pp 267–280

  • Yao ZX, Drieu K, Szweda LI, Papadopoulos V (1999) Free radicals and lipid peroxidation do not mediate beta-amyloid-induced neuronal cell death. Brain Res 847:203–210

    Article  CAS  PubMed  Google Scholar 

  • Yu CA, Tian H, Zhang L, Deng KP, Shenoy SK, Yu L, Xia D, Kim H, Deisenhofer J (1999) Structural basis of multifunctional bovine mitochondrial cytochrome bc1 complex. J Bioenerg Biomembr 31:191–199

    Article  CAS  PubMed  Google Scholar 

  • Zini R, Morin C, Bertelli A, Bertelli AA, Tillement JP (1999) Effects of resveratrol on the brain respiratory chain. Drug Exp Clin Res 25:87–97

    CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by grants from MIUR-FIRB (RBAU01CCAJ_003), Istituto Zooprofilattico Sperimentale della Sardegna (IZS SA/001/2001), and Regione Autonoma della Sardegna, Assessorato dell'Igiene e Sanità e dell'Assistenza Sociale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Diaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz, G., Liu, S., Isola, R. et al. Mitochondrial localization of reactive oxygen species by dihydrofluorescein probes. Histochem Cell Biol 120, 319–325 (2003). https://doi.org/10.1007/s00418-003-0566-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-003-0566-8

Keywords

Navigation