Skip to main content
Log in

CCDC134 interacts with hADA2a and functions as a regulator of hADA2a in acetyltransferase activity, DNA damage-induced apoptosis and cell cycle arrest

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Human transcriptional adaptor hADA2a is an important component of the general control nonderepressible 5 (GCN5) histone acetyltransferase complex. Here, we report that coiled-coil domain containing 134 (CCDC134), a novel nuclear protein, binds to hADA2a and enhances the stability of the hADA2a protein in unstressed conditions. Furthermore, CCDC134 was found to participate in the p300/CBP-associated factor (PCAF) complex via hADA2a and affect the histone acetyltransferase activity of the complex. We also found that CCDC134 increased the PCAF-dependent K320 acetylation of p53 and p53 protein stability in the presence of hADA2a overexpression. Moreover, we demonstrated the biological significance of the interaction between CCDC134 and hADA2a. CCDC134 showed obvious nuclear accumulation after ultraviolet (UV) irradiation, and the knockdown of endogenous CCDC134 suppressed hADA2a-induced cell apoptosis activity and G1/S cell cycle arrest. Together, our findings indicate that CCDC134 might act as a novel regulator of hADA2a, and plays roles in the PCAF complex via hADA2a to affect its acetyltransferase activity and UV-induced DNA damage repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anafi M, Yang YF, Barlev NA, Govindan MV, Berger SL, Butt TR, Walfish PG (2000) GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor. Mol Endocrinol 14:718–732

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian R, Pray-Grant MG, Selleck W, Grant PA, Tan S (2002) Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation. J Biol Chem 277:7989–7995

    Article  PubMed  CAS  Google Scholar 

  • Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD, Berger SL (2001) Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 8:1243–1254

    Article  PubMed  CAS  Google Scholar 

  • Barlev NA, Emelyanov AV, Castagnino P, Zegerman P, Bannister AJ, Sepulveda MA, Robert F, Tora L, Kouzarides T, Birshtein BK, Berger SL (2003) A novel human Ada2 homologue functions with Gcn5 or Brg1 to coactivate transcription. Mol Cell Biol 23:6944–6957

    Article  PubMed  CAS  Google Scholar 

  • Berger SL, Pina B, Silverman N, Marcus GA, Agapite J, Regier JL, Triezenberg SJ, Guarente L (1992) Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70:251–265

    Article  PubMed  CAS  Google Scholar 

  • Brand M, Yamamoto K, Staub A, Tora L (1999) Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. J Biol Chem 274:18285–18289

    Article  PubMed  CAS  Google Scholar 

  • Buryskova M, Pospisek M, Grothey A, Simmet T, Burysek L (2004) Intracellular interleukin-1alpha functionally interacts with histone acetyltransferase complexes. J Biol Chem 279:4017–4026

    Article  PubMed  CAS  Google Scholar 

  • Candau R, Moore PA, Wang L, Barlev N, Ying CY, Rosen CA, Berger SL (1996) Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5. Mol Cell Biol 16:593–602

    PubMed  CAS  Google Scholar 

  • Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13:627–638

    Article  PubMed  CAS  Google Scholar 

  • Curtis AM, Seo SB, Westgate EJ, Rudic RD, Smyth EM, Chakravarti D, FitzGerald GA, McNamara P (2004) Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J Biol Chem 279:7091–7097

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87:2095–2147

    PubMed  CAS  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  PubMed  CAS  Google Scholar 

  • Grant PA, Duggan L, Cote J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, Berger SL, Workman JL (1997) Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11:1640–1650

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Shi T, Ma T, Zhang Y, Ma X, Lu Y, Song Q, Liu W, Ma D, Qiu X (2008) CCDC134, a novel secretory protein, inhibits activation of ERK and JNK, but not p38 MAPK. Cell Mol Life Sci 65:338–349

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Zhang L, Xiao L, Xu LJ, Hu FL, Shao WW, Liu W, Mo XN, Shi TP, Qiu XY (2011) The role of human ADA2a in the regulation of p53 acetylation and stability. Chin Sci Bull 56:397–405

    Article  CAS  Google Scholar 

  • Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E, Yao TP (2001) p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 20:1331–1340

    Article  PubMed  CAS  Google Scholar 

  • Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A, Quong AA, Zhang X, Beerman T, Pestell RG, Avantaggiati ML (2006) Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173:533–544

    Article  PubMed  CAS  Google Scholar 

  • Kuchler AM, Pollheimer J, Balogh J, Sponheim J, Manley L, Sorensen DR, De Angelis PM, Scott H, Haraldsen G (2008) Nuclear interleukin-33 is generally expressed in resting endothelium but rapidly lost upon angiogenic or proinflammatory activation. Am J Pathol 173:1229–1242

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Zhao Y, Meng G, Zeng M, Srinivasan S, Delmolino LM, Gao Q, Dimri G, Weber GF, Wazer DE, Band H, Band V (2002) Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol Cell Biol 22:5801–5812

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL (1999) p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19:1202–1209

    PubMed  CAS  Google Scholar 

  • Ma X, Zhao H, Shan J, Long F, Chen Y, Chen Y, Zhang Y, Han X, Ma D (2007) PDCD10 interacts with Ste20-related kinase MST4 to promote cell growth and transformation via modulation of the ERK pathway. Mol Biol Cell 18:1965–1978

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A, Beltrame M, Bianchi ME (2001) New EMBO members’ review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J 20:4337–4340

    Article  PubMed  CAS  Google Scholar 

  • Nag A, Germaniuk-Kurowska A, Dimri M, Sassack MA, Gurumurthy CB, Gao Q, Dimri G, Band H, Band V (2007) An essential role of human Ada3 in p53 acetylation. J Biol Chem 282:8812–8820

    Article  PubMed  CAS  Google Scholar 

  • Nagy Z, Tora L (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26:5341–5357

    Article  PubMed  CAS  Google Scholar 

  • Ogryzko VV, Kotani T, Zhang X, Schiltz RL, Howard T, Yang XJ, Howard BH, Qin J, Nakatani Y (1998) Histone-like TAFs within the PCAF histone acetylase complex. Cell 94:35–44

    Article  PubMed  CAS  Google Scholar 

  • Pankotai T, Komonyi O, Bodai L, Ujfaludi Z, Muratoglu S, Ciurciu A, Tora L, Szabad J, Boros I (2005) The homologous Drosophila transcriptional adaptors ADA2a and ADA2b are both required for normal development but have different functions. Mol Cell Biol 25:8215–8227

    Article  PubMed  CAS  Google Scholar 

  • Perry M, Chalkley R (1982) Histone acetylation increases the solubility of chromatin and occurs sequentially over most of the chromatin. a novel model for the biological role of histone acetylation. J Biol Chem 257:7336–7347

    PubMed  CAS  Google Scholar 

  • Qian C, Zhang Q, Li S, Zeng L, Walsh MJ, Zhou MM (2005) Structure and chromosomal DNA binding of the SWIRM domain. Nat Struct Mol Biol 12:1078–1085

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW, Appella E (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12:2831–2841

    Article  PubMed  CAS  Google Scholar 

  • Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y (1999) Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem 274:1189–1192

    Article  PubMed  CAS  Google Scholar 

  • Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490

    Article  PubMed  CAS  Google Scholar 

  • Sendra R, Tse C, Hansen JC (2000) The yeast histone acetyltransferase A2 complex, but not free Gcn5p, binds stably to nucleosomal arrays. J Biol Chem 275:24928–24934

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Yoshida M (2010) HMGB proteins and transcriptional regulation. Biochimica et Biophysica Acta 1799:114–118

    PubMed  CAS  Google Scholar 

  • Wang YL, Faiola F, Xu M, Pan S, Martinez E (2008) Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J Biol Chem 283:33808–33815

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Sciences Foundation of China (30901303), Research Fund for the Doctoral Program of Higher Education of China (20090001120033) and the National Science and Technology Major Projects of New Drugs (2012ZX09103301-032). We thank Prof. Dalong Ma (Peking University Center for Human Disease Genomics) for his comments and discussion, Pei Zhang (Peking University Third Hospital, Beijing, China) for her generous technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Qiu.

Additional information

J. Huang and L. Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2012_932_MOESM1_ESM.jpg

Supplemental figure 1 In vitro association between CCDC134 and hADA2a β-galactosidase activity of co-transformant yeast colonies grown on highly stringent media (SD/-LTH) , was assayed by a colony lift filter. (A) The positive yeast colonies after two-hybrid assay using CCDC134 bait plasmid to screen a human full-length cDNA library consisted of 1500 known genes associated with cell apoptosis, cell proliferation and cell cycle. (B) Negative sign (-) indicates co-transformation with pGB empty vector. Positive results of seven colonies grown on SD/-LTH were shown. 251x224mm (72 x 72 DPI) (JPEG 160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Zhang, L., Liu, W. et al. CCDC134 interacts with hADA2a and functions as a regulator of hADA2a in acetyltransferase activity, DNA damage-induced apoptosis and cell cycle arrest. Histochem Cell Biol 138, 41–55 (2012). https://doi.org/10.1007/s00418-012-0932-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0932-5

Keywords

Navigation