Skip to main content
Log in

Adsorption-induced permeability change of porous material: a micromechanical model and its applications

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This study focuses on developing a micromechanical model of poroelasticity with adsorption-induced permeability change occurred in porous material. The underlying pore pressure was represented by means of virial expansion to evaluate such adsorption-induced permeability change, in which the solid–gas interactions or the effects of interactions between molecules were involved. The relation between surface strain and volumetric strain under infinitesimal deformation conditions was presented to gain an explicit formulation of pore surface area with respect to volumetric strain and porosity. After the formulation of surface stress modified by Langmuir isothermal adsorption was derived, the differential micromechanical constitutive model of porous material was obtained. By providing that the ratio of current permeability to initial one was equal to the cubic ratio of current porosity to initial porosity, the differential equations for permeability change was consequently obtained. The present simulations showed that the predictions from the model are in good agreement with the experimental results of permeability change of coal induced by adsorption of CO\(_2\) and CH\(_4\) under confined pressure conditions in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(\sigma \) :

Volumetric stress (Pa)

\(\epsilon \) :

Volumetric strain of porous media (\(-\))

\(s_{ij}\) :

Deviatoric stress tensor (Pa)

\(e_{ij}\) :

Deviatoric strain tensor (\(-\))

p :

Pore pressure (Pa)

\(p_b\) :

Bulk pressure (Pa)

\(p_a\) :

Adsorption pressure, \(p_a=p-p_b\) (Pa)

\(\varphi \) :

Change of Lagrangian porosity (\(-\))

\(\phi \) :

Porosity in the current configuration (\(-\))

\(\phi _0\) :

Porosity in the reference configuration (\(-\))

\(\sigma _s\) :

Surface stress (N/m)

\(\sigma _{s0}\) :

Initial surface stress (N/m)

\(\varepsilon _s \) :

Surface strain (\(-\))

\(\varepsilon _0 \) :

Residual surface strain (\(-\))

\(\epsilon ^s \) :

Volumetric strain of the solid matrix (\(-\))

\(\overline{V}_b \) :

Molar volume of the bulk gas (m\(^3\)/mol)

\(F_s \) :

Solid Helmholtz free energy per unit volume (J/m\(^3\))

U :

Interface free energy per unit volume (J/m\(^3\))

\(\gamma _{sf} \) :

Surface free energy of the solid–gas (J/m\(^2\))

\(\gamma _s \) :

Surface free energy of solid (J/m\(^2\))

\(\gamma _s^0 \) :

Initial surface free energy of solid (J/m\(^2\))

\(\gamma _f \) :

Surface free energy of gas (J/m\(^2\))

\(W_{sf} \) :

Work of adhesion interacted solid–gas (J/m\(^2\))

\(\mu \) :

Molar chemical potential (J/mol)

\(N_s \) :

Number of moles of surface amount excess

A :

Actual pore area per unit volume (m\(^{-1}\))

\(A_0 \) :

Initial pore area per unit volume (m\(^{-1}\))

K :

Bulk modulus (Pa)

b :

Biot coefficient (\(-\))

N :

Biot modulus (Pa)

G :

Shear modulus (Pa)

\(\Gamma \) :

Amount of adsorption (mol/m\(^2\))

\(\Gamma ^m \) :

Maximum amount of adsorption (mol/m\(^2\))

B :

Langmuir constant (Pa\(^{1}\))

\(\theta \) :

Fraction of surface covered (\(-\))

\(\mu _s+\lambda _s \) :

Elastic constants of solid surface (N/m)

R :

Gas constant (J mol\(^{-1}\,\) K\(^{-1}\))

T :

Temperature (K)

a :

Van der Waals constant (m\(^6 \,\)Pa/mol\(^2\))

\(b_v \) :

Van der Waals constant (m\(^3\)/mol)

\(c_1,c_2,\dots ,c_n \) :

Coefficients of pore pressure equation

References

  1. Adamson, A.W., Gast, A.P.: Physical Chemistry of Surfaces. Wiley, Hoboken (1997)

    Google Scholar 

  2. Bear, J., Cheng, A.H.-D.: Modeling Groundwater Flow and Contaminant Transport. Springer, New York (2010)

    Book  MATH  Google Scholar 

  3. Brochard, L., Vandamme, M., Pellenq, R.J.M.: Poromechanics of microporous material. J. Mech. Phys. Solids 60(4), 606–622 (2012a)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brochard, L., Vandamme, M., Pellenq, R.J.M., Fen-Chong, T.: Adsorption-induced deformation of microporous materials: coal swelling induced by CO2-CH4 competitive adsorption. Langmuir 28(4), 2659–2670 (2012b)

    Article  Google Scholar 

  5. Bronshtein, I.N., Semendyayev, K.A., Musiol, G., Muehlig, H.: Handbook of Mathematics, 5th edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  6. Burden, R.L., Faires, J.D.: Numerical Analysis, 7th edn, pp. 315–316. Thomson Learning, London (2001)

    MATH  Google Scholar 

  7. Coussy, O.: Mechanics of Porous Continua. Wiley, Hoboken (1995)

    MATH  Google Scholar 

  8. Coussy, O.: Mechanics and Physics of Porous Solids. Wiley, Hoboken (2010)

    Book  Google Scholar 

  9. Dunning, W.J.: Adsorption thermodynamics and the structure of crystal surfaces. J. Phys. Chem. 67(10), 2023–2029 (1963)

    Article  Google Scholar 

  10. Gibbs, J.W.: The Collected Work of J. Willard Gibbs. Longmans, Green and Co., New York (1928)

    Google Scholar 

  11. Gor, G.Y., Neimark, A.V.: Adsorption-induced deformation of mesoporous solids. Langmuir 26(16), 13021–13027 (2010)

    Article  Google Scholar 

  12. Gu, F., Chalaturnyk, J. J.: Analysis of coalbed methane production by reservoir and geomechanical coupling simulation. J. Canad. Petrol. Technol. 44(10), 33–42 (2005)

  13. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    Article  MATH  Google Scholar 

  15. Israelachvili, J.N.: Intermolecular and Surface Forces. Elsevier, Oxford (2011)

    Google Scholar 

  16. Karacan, C.O.: Swelling-induced volumetric strains internal to a stressed coal associated with CO\(_2\) sorption. Int. J. Coal Geol. 72(3–4), 209–220 (2007)

    Article  Google Scholar 

  17. Karacan, C.O., Okandan, E.: Adsorption and gas transport in coal microstructure: investigation and evaluation by quantitative X-ray CT imaging. Fuel 80(4), 509–520 (2001)

    Article  Google Scholar 

  18. Kowalczyk, P., Ciach, A., Neimark, A.V.: Adsorption-induced deformation of microporous carbons: pore size distribution effect. Langmuir 24(13), 6603–6608 (2008)

    Article  Google Scholar 

  19. Larsen, J.W.: The effects of dissolved CO\(_2\) on coal structure and properties. Int. J. Coal Geol. 57(1), 63–70 (2004)

    Article  Google Scholar 

  20. Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pergamon, Oxford (1980)

    MATH  Google Scholar 

  21. Liu, J.S., Chen, Z.W., Elsworth, D., Miao, X.X., Mao, X.B.: Evaluation of stress-controlled coal swelling processes. Int. J. Coal Geol. 83(4), 446–455 (2010)

    Article  Google Scholar 

  22. Mahajan, O.P.: CO2 surface area of coals: the 25-year paradox. Carbon 29(6), 735–742 (1991)

    Article  Google Scholar 

  23. Meyers, R.A.: Coal Structure. Academic Press, New York (1982)

    Google Scholar 

  24. Myers, A.L.: Thermodynamics of adsorption in porous materials. AIChE J. 48(1), 145–160 (2002)

    Article  Google Scholar 

  25. Neimark, A.V., Coudert, F.-X.: Stress-based model for the breathing of metal-organic frameworks. J. Phys. Chem. Lett. 1(1), 445–449 (2010)

    Article  Google Scholar 

  26. Pijaudier-Cabot, G., Vermorel, R., Miqueu, C., Mendiboure, B.: Revisiting poromechanics in the context of microporous materials. C.R. Mech. 339(12), 770–778 (2011)

    Article  Google Scholar 

  27. Palmer, I., Mansoori, J.: How permeability depends on stress and pore pressure in coalbeds: a new model. SPE Reserv Evalu Eng 1(6), 539–544 (1998)

    Article  Google Scholar 

  28. Pan, Z.J., Connell, L.D.: A theoretical model for gas adsorption-induced coal swelling. Int. J. Coal Geol. 69(4), 243–252 (2007)

    Article  Google Scholar 

  29. Parkash, S., Chakrabartty, S.K.: Microporosity in Alberta plains coals. Int. J. Coal Geol. 6(1), 55–70 (1986)

    Article  Google Scholar 

  30. Pathria, R.K., Beale, P.D.: Statistical Mechanics, 3rd edn. Elsevier, Burlinton (2011)

    MATH  Google Scholar 

  31. Reiss, L.H.: The Reservoir Engineering Aspects of Fractured Formations. Gulf Publishing Company, Houston (1980)

    Google Scholar 

  32. Robertson, E.P.: Measurement and Modeling of Sorption-Induced Strain and Permeability Changes in Coal. Idaho National Laboratory, INL/EXT-06-11832 (2005)

  33. Roque-Malherbe, R.M.A.: Adsorption and Diffusion in Nanoporous Materials. CRC PRESS, Boca Raton (2007)

    Book  Google Scholar 

  34. Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G.: Adsorption by Powders and Porous Solids Principles, Methodology and Applications, 2nd edn. Elsevier, Oxford (2014)

    Google Scholar 

  35. Shi, J.Q., Durucan, S.: Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery. Transp. Porous Media 56(1), 1–16 (2004)

    Article  Google Scholar 

  36. Shuttleworth, R.: The surface tension of solids. Proc. Phys. Soc. Sect. A 63, 444–457 (1950)

    Article  Google Scholar 

  37. Ulm, F.-J.: Chemomechanics of concrete at finer scales. Mater. Struct. 36(7), 426–438 (2003)

    Article  MathSciNet  Google Scholar 

  38. van Bergen, F., Pagier, H., Krzystolik, P.: Field experiment of enhanced coalbed methane-CO\(_2\) in the upper Silesian basin of Poland. Environ. Geosci. 13(3), 201–224 (2006)

    Article  Google Scholar 

  39. Vandamme, M., Brochard, L., Lecampion, B., Coussy, O.: Adsorption and strain: the CO2-induced swelling of coal. J. Mech. Phys. Solids 58(10), 1489–1505 (2010)

    Article  MATH  Google Scholar 

  40. Vermorel, R., Pijaudier-Cabot, G.: Enhanced continuum poromechanics to account for adsorption induced swelling of saturated isotropic microporous materials. Eur. J. Mech. A/Solids 44, 148–156 (2014)

    Article  MathSciNet  Google Scholar 

  41. Wang, G.X., Massarotto, P., Rudolph, V.: An improved permeability model of coal for coal bed methane recovery and CO\(_2\) geosequestration. Int. J. Coal Geol. 77(1–2), 127–136 (2009)

    Article  Google Scholar 

  42. White, C.M., Smith, D.H., Jones, K.L., Goodman, A.L., Jikich, S.A., LaCount, R.B., DuBose, S.B., Ozdemir, E., Morai, B.I., Schroeder, K.T.: Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery-a review. Energy Fuels 19(3), 659–724 (2005)

    Article  Google Scholar 

  43. Wolfer, W.G.: Elastic properties of surfaces on nanoparticles. Acta Mater. 59(20), 7736–7743 (2011)

    Article  Google Scholar 

  44. Yang, K., Lu, X., Lin, Y., Neimark, A.V.: Deformation of coal induced by methane adsorption at geological conditions. Energy Fuels 24(11), 5964–5995 (2010)

    Google Scholar 

  45. Zhang, H., Liu, J., Elsworth, D.: How sorption-induced matrix deformation affects gas flow in coal seams: a new FE model. Int. J. Rock Mech. Mining Sci. 45(8), 1226–1236 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The financial supports from the National Science Foundation of China (Nos. 41172116, U1261212, and 51134005) are all gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C.J., Feng, J.L. Adsorption-induced permeability change of porous material: a micromechanical model and its applications. Arch Appl Mech 86, 465–481 (2016). https://doi.org/10.1007/s00419-015-1041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1041-4

Keywords

Navigation