Skip to main content
Log in

Effects of low and high cadence interval training on power output in flat and uphill cycling time-trials

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study tested the effects of low-cadence (60 rev min−1) uphill (Int60) or high-cadence (100 rev min−1) level-ground (Int100) interval training on power output (PO) during 20-min uphill (TTup) and flat (TTflat) time-trials. Eighteen male cyclists (\( \dot{V}{\text{O}}_{2\max } \): 58.6 ± 5.4 mL min−1 kg−1) were randomly assigned to Int60, Int100 or a control group (Con). The interval training comprised two training sessions per week over 4 weeks, which consisted of six bouts of 5 min at the PO corresponding to the respiratory compensation point (RCP). For the control group, no interval training was conducted. A two-factor ANOVA revealed significant increases on performance measures obtained from a laboratory-graded exercise test (GXT) (P max: 2.8 ± 3.0%; p < 0.01; PO and \( \dot{V}{\text{O}}_{2} \) at RCP: 3.6 ± 6.3% and 4.7 ± 8.2%, respectively; p < 0.05; and \( \dot{V}{\text{O}}_{2} \) at ventilatory threshold: 4.9 ± 5.6%; p < 0.01), with no significant group effects. Significant interactions between group and uphill and flat time-trial, pre- versus post-training on PO were observed (p < 0.05). Int60 increased PO during both TTup (4.4 ± 5.3%) and TTflat (1.5 ± 4.5%). The changes were −1.3 ± 3.6, 2.6 ± 6.0% for Int100 and 4.0 ± 4.6%, −3.5 ± 5.4% for Con during TTup and TTflat, respectively. PO was significantly higher during TTup than TTflat (4.4 ± 6.0; 6.3 ± 5.6%; pre and post-training, respectively; p < 0.001). These findings suggest that higher forces during the low-cadence intervals are potentially beneficial to improve performance. In contrast to the GXT, the time-trials are ecologically valid to detect specific performance adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aughey RJ, Murphy KT, Clark SA, Garnham AP, Snow RJ, Cameron-Smith D, Hawley JA, McKenna MJ (2007) Muscle Na + -K + -ATPase activity and isoform adaptations to intense interval exercise and training in well-trained athletes. J Appl Physiol 103(1):39–47

    Article  PubMed  CAS  Google Scholar 

  • Balmer J, Davison RC, Bird SR (2000) Peak power predicts performance power during an outdoor 16.1-km cycling time trial. Med Sci Sports Exerc 32(8):1485–1490

    Article  PubMed  CAS  Google Scholar 

  • Banister EW, Calvert TW (1980) Planning for future performance: implications for long term training. Can J Appl Sport Sci 5(3):170–176

    PubMed  CAS  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60(6):2020–2027

    PubMed  CAS  Google Scholar 

  • Bertucci W, Grappe F, Girard A, Betik A, Rouillon JD (2005) Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling. J Biomech 38(5):1003–1010

    Article  PubMed  Google Scholar 

  • Billat LV (2001) Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med 31(1):13–31

    Article  PubMed  CAS  Google Scholar 

  • Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 2(2):92–98

    PubMed  CAS  Google Scholar 

  • Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ (2005) Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol 98(6):1985–1990

    Article  PubMed  Google Scholar 

  • Burgomaster KA, Heigenhauser GJ, Gibala MJ (2006) Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl Physiol 100(6):2041–2047

    Article  PubMed  Google Scholar 

  • Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586(1):151–160

    Article  PubMed  CAS  Google Scholar 

  • Cohen J (1988) The concepts of power analysis. In: Statistical power analysis for the behavioural sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale, pp 8–14

  • Duncan GE, Howley ET, Johnson BN (1997) Applicability of VO2max criteria: discontinuous versus continuous protocols. Med Sci Sports Exerc 29(2):273–278

    Article  PubMed  CAS  Google Scholar 

  • Foster C, Florhaug JA, Franklin J, Gottschall L, Hrovatin LA, Parker S, Doleshal P, Dodge C (2001) A new approach to monitoring exercise training. J Strength Cond Res 15(1):109–115

    PubMed  CAS  Google Scholar 

  • Fregly BJ, Zajac FE, Dairaghi CA (2000) Bicycle drive system dynamics: theory and experimental validation. J Biomech Eng 122(4):446–452

    Article  PubMed  CAS  Google Scholar 

  • Gellish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK (2007) Longitudinal modeling of the relationship between age and maximal heart rate. Med Sci Sports Exerc 39(5):822–829

    PubMed  Google Scholar 

  • Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 575(3):901–911

    Article  PubMed  CAS  Google Scholar 

  • Hansen EA, Jorgensen LV, Jensen K, Fregly BJ, Sjogaard G (2002) Crank inertial load affects freely chosen pedal rate during cycling. J Biomech 35(2):277–285

    Article  PubMed  Google Scholar 

  • Harriss DJ, Atkinson G (2009) International Journal of Sports Medicine—ethical standards in sport and exercise science research. Int J Sports Med 30(10):701–702

    Article  PubMed  CAS  Google Scholar 

  • Howley ET, Bassett DR, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27(9):1292–1301

    PubMed  CAS  Google Scholar 

  • Jobson SA, Nevill AM, George SR, Jeukendrup AE, Passfield L (2008a) Influence of body position when considering the ecological validity of laboratory time-trial cycling performance. J Sports Sci 26(12):1269–1278

    Article  PubMed  CAS  Google Scholar 

  • Jobson SA, Woodside J, Passfield L, Nevill AM (2008b) Allometric scaling of uphill cycling performance. Int J Sports Med 29(9):753–757

    Article  PubMed  CAS  Google Scholar 

  • Jobson SA, Passfield L, Atkinson G, Barton G, Scarf P (2009) The analysis and utilization of cycling training data. Sports Med 39(10):833–844

    Article  PubMed  Google Scholar 

  • Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G (1985) Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 6(4):197–201

    Article  PubMed  CAS  Google Scholar 

  • Lafortuna CL, Marinone PG, Ottolini S, Sartorio A (2003) GH responses to a near-maximal exercise training session on-the-field in cyclists. J Endocrinol Invest 26(8):12–14

    Google Scholar 

  • Lindsay FH, Hawley JA, Myburgh KH, Schomer HH, Noakes TD, Dennis SC (1996) Improved athletic performance in highly trained cyclists after interval training. Med Sci Sports Exerc 28(11):1427–1434

    Article  PubMed  CAS  Google Scholar 

  • Lucia A, Hoyos J, Chicharro JL (2001) Preferred pedalling cadence in professional cycling. Med Sci Sports Exerc 33(8):1361–1366

    Article  PubMed  CAS  Google Scholar 

  • Lucia A, San Juan AF, Montilla M, CaNete S, Santalla A, Earnest C, Pérez M (2004) In professional road cyclists, low pedaling cadences are less efficient. Med Sci Sports Exerc 36(6):1048–1054

    Article  PubMed  Google Scholar 

  • Nimmerichter A, Williams C, Bachl N, Eston R (2010) Evaluation of a field test to assess performance in elite cyclists. Int J Sports Med 31(3):160–166

    Article  PubMed  CAS  Google Scholar 

  • Nimmerichter A, Eston R, Bachl N, Williams C (2011) Longitudinal monitoring of power output and heart rate profiles in elite cyclists. J Sports Sci (in press)

  • Padilla S, Mujika I, Orbananos J, Angulo F (2000) Exercise intensity during competition time trials in professional road cycling. Med Sci Sports Exerc 32(4):850–856

    Article  PubMed  CAS  Google Scholar 

  • Paton CD, Hopkins WG, Cook C (2009) Effects of low- vs. high-cadence interval training on cycling performance. J Strength Cond Res 23(6):1758–1763

    Article  PubMed  Google Scholar 

  • Sargeant AJ (1994) Human power output and muscle fatigue. Int J Sports Med 15(3):116–121

    Article  PubMed  CAS  Google Scholar 

  • Stepto NK, Hawley JA, Dennis SC, Hopkins WG (1999) Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc 31(5):736–741

    Article  PubMed  CAS  Google Scholar 

  • Stepto NK, Martin DT, Fallon KE, Hawley JA (2001) Metabolic demands of intense aerobic interval training in competitive cyclists. Med Sci Sports Exerc 33(2):303–310

    PubMed  CAS  Google Scholar 

  • Taylor HL, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol 8(1):73–80

    PubMed  CAS  Google Scholar 

  • Vercruyssen F, Brisswalter J (2010) Which factors determine the freely chosen cadence during submaximal cycling? J Sci Med Sport 13(2):225–231

    Article  PubMed  Google Scholar 

  • Vercruyssen F, Suriano R, Bishop D, Hausswirth C, Brisswalter J (2005) Cadence selection affects metabolic responses during cycling and subsequent running time to fatigue. Br J Sports Med 39(5):267–272

    Article  PubMed  CAS  Google Scholar 

  • Wasserman K, Hansen JE, Sue DY, Casaburi R, Whipp BJ (1999) Physiology of exercise. In: Principles of exercise testing and interpretation, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 30–32

  • Westgarth-Taylor C, Hawley JA, Rickard S, Myburgh KH, Noakes TD, Dennis SC (1997) Metabolic and performance adaptations to interval training in endurance-trained cyclists. Eur J Appl Physiol Occup Physiol 75(4):298–304

    Article  PubMed  CAS  Google Scholar 

  • Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA (1997) Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol 75(1):7–13

    Article  PubMed  CAS  Google Scholar 

  • Wooles A, Robinson A, Keen P (2005) A static method for obtaining a calibration factor for SRM bicycle power cranks. Sports Eng 8(3):137–144

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the commitment of the participants in this study. This research was not sponsored by any funding body external to the University of Exeter. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Nimmerichter.

Additional information

Communicated by Jean-René Lacour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimmerichter, A., Eston, R., Bachl, N. et al. Effects of low and high cadence interval training on power output in flat and uphill cycling time-trials. Eur J Appl Physiol 112, 69–78 (2012). https://doi.org/10.1007/s00421-011-1957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1957-5

Keywords

Navigation