Skip to main content
Log in

Is a 12-h Nitrox dive hazardous for pulmonary function?

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Prolonged exposure to a high partial pressure of oxygen leads to inflammation of pulmonary tissue [pulmonary oxygen toxicity (POT)], which is associated with tracheobronchial irritation, retrosternal pain and coughing, and decreases in vital capacity (VC). The nitric oxide (NO) concentration in exhaled gas (FeNO) has been used as an indicator of POT, but the effect of SCUBA diving on FeNO has rarely been studied. The study presented here aimed to assess alterations to pulmonary function and FeNO following a 12-h dive using breathing apparatus with a relatively high partial pressure of oxygen.

Methods

Six healthy, male, non-smoking military SCUBA divers were recruited (age 31.8 ± 2.7 years, height 179 ± 0.09 cm, and body weight 84.6 ± 14 kg). Each diver completed a 12-h dive using a demand-controlled semi-closed-circuit rebreather. During the 12 h of immersion, divers were subjected to 672 oxygen toxicity units (OTU).

A complete pulmonary function test (PFT) was completed the day before and immediately after immersion. FeNO was measured using a Nobreath™ Quark (COSMED™, Rome, Italy), three times for each diver. The first datapoint was collected before the dive to establish the “basal state”, a second was collected immediately after divers emerged from the water, and the final measurement was taken 24 h after the dive.

Result

Despite prolonged inhalation of a hyperoxic hyperbaric gas mixture, no clinical pulmonary symptoms were observed, and no major changes in pulmonary function were detected. However, a major decrease in FeNO values was observed immediately after emersion [0–12 ppb (median, 3.8 ppb)], with a return to baseline [2–60 ppb (median, 26 ppb) 24 h later (3–73 ppb (median, 24.7 ppb)].

Conclusion

These results suggest that if the OTU remain below the recommended limit values, but does alter FeNO, this type of dive does not persistently impair lung function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ERV :

Expiratory reserve volume

FEF 25–75%:

Forced expiratory flow 25–75%

FeNO:

Concentration in exhaled nitric oxide

FEV 1 :

Forced expiratory volume in 1 s

FVC :

Forced vital capacity

IRV :

Inspiratory reserve volume

msw:

Meter sea water (is a unit of pressure used in underwater diving)

NO:

Nitric oxide

OTU:

Oxygen toxicity units (OTU)

PEF:

Peak expiratory flow

PFT:

Pulmonary function test

POT:

Pulmonary oxygen toxicity

ppb:

Parts per billion

RV :

Residual volume

SD:

Standard deviation

TLC:

Total lung capacity

TLCO :

Transfer factor for carbon monoxide

UPTD:

Unit pulmonary toxic dose

\(V_{C}\) :

Vital capacity

\(V_{t}\) :

Tidal volume

References

  • Allen BW, Demchenko IT, Piantadosi CA (2009) Two faces of nitric oxide: implications for cellular mechanisms of oxygen toxicity. J Appl Physiol 106(2):662–667

    CAS  PubMed  Google Scholar 

  • Arieli R, Yalov A, Goldenshluger RP (2002) Modeling pulmonary and CNS O(2) toxicity and estimation of parameters for humans. J Appl Physiol (1985) 92(1):248–256

    CAS  Google Scholar 

  • Berg JT, Deem S, Kerr ME, Swenson ER (2000) Hemoglobin and red blood cells alter the response of expired nitric oxide to mechanical forces. Am J Physiol Heart Circ Physiol 279(6):H2947–H2953

    CAS  PubMed  Google Scholar 

  • Bryan CL, Jenkinson SG (1988) Oxygen toxicity. Clin Chest Med 9(1):141–152

    CAS  PubMed  Google Scholar 

  • Caspersen C, Stensrud T, Storebo M, Thorsen E (2013) Exhaled nitric oxide and lung function after moderate normobaric hyperoxic exposure. Undersea Hyperb Med 40(1):7–13

    PubMed  Google Scholar 

  • Castagna O, Gempp E, Poyet R, Schmid B, Desruelle AV, Crunel V, Maurin A, Choppard R, MacIver DH (2017) Cardiovascular mechanisms of extravascular lung water accumulation in divers. Am J Cardiol 119(6):929–932

    PubMed  Google Scholar 

  • Catron PW, Bertoncini J, Layton RP, Bradley ME, Flynn ET Jr (1986) Respiratory mechanics in men following a deep air dive. J Appl Physiol (1985) 61(2):734–740

    CAS  Google Scholar 

  • Clark JM (1988) Pulmonary limits of oxygen tolerance in man. Exp Lung Res 14(Suppl):897–910

    PubMed  Google Scholar 

  • Clark JM, Lambertsen CJ (1971a) Pulmonary oxygen toxicity: a review. Pharmacol Rev 23(2):37–133

    CAS  PubMed  Google Scholar 

  • Clark JM, Lambertsen CJ (1971b) Rate of development of pulmonary O2 toxicity in man during O2 breathing at 2.0 Ata. J Appl Physiol 30(5):739–752

    CAS  PubMed  Google Scholar 

  • Clark JM, Gelfand R, Lambertsen CJ, Stevens WC, Beck G Jr, Fisher DG (1995) Human tolerance and physiological responses to exercise while breathing oxygen at 2.0 ATA. Aviat Space Environ Med 66(4):336–345

    CAS  PubMed  Google Scholar 

  • Cucchiaro G, Tatum AH, Brown MC, Camporesi EM, Daucher JW, Hakim TS (1999) Inducible nitric oxide synthase in the lung and exhaled nitric oxide after hyperoxia. Am J Physiol 277(3):L636–644

    CAS  PubMed  Google Scholar 

  • Dujic Z, Eterovic D, Denoble P, Krstacic G, Tocilj J, Gosovic S (1993) Effect of a single air dive on pulmonary diffusing capacity in professional divers. J Appl Physiol (1985) 74(1):55–61

    CAS  Google Scholar 

  • Dweik RA, Laskowski D, Abu-Soud HM, Kaneko F, Hutte R, Stuehr DJ, Erzurum SC, Erzurum SC (1998) Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism. J Clin Invest 101(3):660–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, Olin AC, Plummer AL, Taylor DR, Amercian Thoracic Society Committee on Interpretation of Exhaled Nitric Oxide Levels For Clinical (2011) An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med 184(5):602–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geigel EJ, Hyde RW, Perillo IB, Torres A, Perkins PT, Pietropaoli AP, Frasier LM, Frampton MW, Utell MJ (1999) Rate of nitric oxide production by lower alveolar airways of human lungs. J Appl Physiol (1985) 86(1):211–221

    CAS  Google Scholar 

  • Hamilton R, Kenyon DJ, Peterson R, Bees BGJD (1988) Repex habitat diving procedures: Repetitive vertical excursions, oxygen limits, and surfacing techniques. Technical Report Retrieved 29 Apnl 2008, pp 88–1 (A. Rockville, MD: NOAA Office of Undersea Research).

  • Kapanci Y, Tosco R, Eggermann J, Gould VE (1972) Oxygen pneumonitis in man., Light- and electron-microscopic morphometric studies. Chest 62(2):162–169

    CAS  PubMed  Google Scholar 

  • Kharitonov SA, Barnes PJ (2000) Clinical aspects of exhaled nitric oxide. Eur Respir J 16(4):781–792

    CAS  PubMed  Google Scholar 

  • Kharitonov SA, Barnes PJ (2001) Exhaled markers of pulmonary disease. Am J Respir Crit Care Med 163(7):1693–1722

    CAS  PubMed  Google Scholar 

  • Kjelkenes I, Thorsen E (2009) Time course of the reduction in nitric oxide concentration in exhaled gas after exposure to hyperbaric hyperoxia. Diving Hyperb Med 39(2):77–80

    PubMed  Google Scholar 

  • Klein J (1990) Normobaric pulmonary oxygen toxicity. Anesth Analg 70(2):195–207

    CAS  PubMed  Google Scholar 

  • Lemaitre F, Meunier N, Bedu M (2002) Effect of air diving exposure generally encountered by recreational divers: oxidative stress? Undersea Hyperb Med 29(1):39–49

    CAS  PubMed  Google Scholar 

  • Maziak W, Loukides S, Culpitt S, Sullivan P, Kharitonov SA, Barnes PJ (1998) Exhaled nitric oxide in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157(3 Pt 1):998–1002

    CAS  PubMed  Google Scholar 

  • Montgomery AB, Luce JM, Murray JF (1989) Retrosternal pain is an early indicator of oxygen toxicity. Am Rev Respir Dis 139(6):1548–1550

    CAS  PubMed  Google Scholar 

  • Paraskakis E, Brindicci C, Fleming L, Krol R, Kharitonov SA, Wilson NM, Barnes PJ, Bush A (2006) Measurement of bronchial and alveolar nitric oxide production in normal children and children with asthma. Am J Respir Crit Care Med 174(3):260–267

    CAS  PubMed  Google Scholar 

  • Pedoto A, Nandi J, Yang ZJ, Wang J, Bosco G, Oler A, Hakim TS, Camporesi EM (2003) Beneficial effect of hyperbaric oxygen pretreatment on lipopolysaccharide-induced shock in rats. Clin Exp Pharmacol Physiol 30(7):482–488

    CAS  PubMed  Google Scholar 

  • Pendergast DR, Lundgren CE (2009) The underwater environment: cardiopulmonary, thermal, and energetic demands. J Appl Physiol 106(1):276–283

    CAS  PubMed  Google Scholar 

  • Pendergast DR, Moon RE, Krasney JJ, Held HE, Zamparo P (2015) Human physiology in an aquatic environment. Compr Physiol 5(4):1705–1750

    PubMed  Google Scholar 

  • Prefaut C, Lupi-h E, Anthonisen NR (1976) Human lung mechanics during water immersion. J Appl Physiol 40(3):320–323

    CAS  PubMed  Google Scholar 

  • Puthucheary ZA, Liu J, Bennett M, Trytko B, Chow S, Thomas PS (2006) Exhaled nitric oxide is decreased by exposure to the hyperbaric oxygen therapy environment. Mediators Inflamm 2006(5):72620

    PubMed  PubMed Central  Google Scholar 

  • Robinson FR, Casey HW, Weibel ER (1974) Animal model: oxygen toxicity in nonhuman primates. Am J Pathol 76(1):175–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sackner MA, Landa J, Hirsch J, Zapata A (1975) Pulmonary effects of oxygen breathing. A 6-hour study in normal men. Ann Intern Med 82(1):40–43

    CAS  PubMed  Google Scholar 

  • Schmetterer L, Strenn K, Kastner J, Eichler HG, Wolzt M (1997) Exhaled NO during graded changes in inhaled oxygen in man. Thorax 52(8):736–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shykoff BE (2005) Pulmonary effects of submerged oxygen breathing: 4-, 6-, and 8-hour dives at 140 kPa. Undersea Hyperb Med 32(5):351–361

    CAS  PubMed  Google Scholar 

  • Smith JL (1899) The pathological effects due to increase of oxygen tension in the air breathed. J Physiol 24(1):19–35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taraldsoy T, Bolann BJ, Thorsen E (2007) Reduced nitric oxide concentration in exhaled gas after exposure to hyperbaric hyperoxia. Undersea Hyperb Med 34(5):321–327

    CAS  PubMed  Google Scholar 

  • Thom SR (2011) Hyperbaric oxygen: its mechanisms and efficacy. Plast Reconstr Surg 127(Suppl 1):131S–141S

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorsen E, Segadal K, Reed JW, Elliott C, Gulsvik A, Hjelle JO (1993) Contribution of hyperoxia to reduced pulmonary function after deep saturation dives. J Appl Physiol (1985) 75(2):657–662

    CAS  Google Scholar 

  • Thorsen E, Aanderud L, Aasen TB (1998) Effects of a standard hyperbaric oxygen treatment protocol on pulmonary function. Eur Respir J 12(6):1442–1445

    CAS  PubMed  Google Scholar 

  • van Ooij PJ, Houtkooper A, van Hulst R (2010) Variations in exhaled nitric oxide concentration after three types of dives. Diving Hyperb Med 40(1):4–7

    PubMed  Google Scholar 

  • van Ooij PJ, van Hulst RA, Houtkooper A, Sterk PJ (2011) Differences in spirometry and diffusing capacity after a 3-h wet or dry oxygen dive with a PO(2) of 150 kPa. Clin Physiol Funct Imaging 31(5):405–410

    PubMed  Google Scholar 

  • van Ooij PJ, Hollmann MW, van Hulst RA, Sterk PJ (2013) Assessment of pulmonary oxygen toxicity: relevance to professional diving; a review. Respir Physiol Neurobiol 189(1):117–128

    PubMed  Google Scholar 

  • van Ooij PJ, van Hulst RA, Houtkooper A, Sterk PJ (2014) Nitric oxide and carbon monoxide diffusing capacity after a 1-h oxygen dive to 9 m of sea water. Clin Physiol Funct Imaging 34(3):199–208

    PubMed  Google Scholar 

  • Wright W (1972) Use of the University of Pennsylvania, Institute for Environmental Medicine Procedure for calculation of cummulative pulmonary oxygen toxicity. Navy Experimental Diving Unit, Washington, DC

    Google Scholar 

Download references

Acknowledgements

We thank B. Schmid, Engineer, for his invaluable contribution to this work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

OC, CB and JEB conceptualized and designed the study, performed the experiments, analyzed the data, interpreted the results of experiments, and prepared the figures. OC and JEB drafted, edited, and revised the manuscript. OC, CB and JEB approved the final version of the manuscript.

Corresponding author

Correspondence to Olivier Castagna.

Ethics declarations

Conflict of interest

The authors have no competing interests to disclose in relation to this study. The results of the present study do not constitute endorsement by the European JAP, and are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation.

Additional information

Communicated by Susan Hopkins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castagna, O., Bergmann, C. & Blatteau, J.E. Is a 12-h Nitrox dive hazardous for pulmonary function?. Eur J Appl Physiol 119, 2723–2731 (2019). https://doi.org/10.1007/s00421-019-04248-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-019-04248-w

Keywords

Navigation