Skip to main content

Advertisement

Log in

Influence of the Mechanical Properties of the Muscle–tendon Unit on Force Generation in Runners with Different Running Economy

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In earlier studies, we found more economical runners having a more compliant quadriceps femoris (QF) tendon at low force levels, and a higher contractile strength and stiffness at the triceps surae (TS). To better understand how these differences influence force generation economy and energy recovery, we simulated contractions using a Hill-type muscle model and the previously determined muscle properties as input parameters. For eight different activation levels, we simulated isovelocity concentric contractions preceded by an isovelocity stretch. The length changes and contraction velocities imposed to the muscle–tendon units (MTU) corresponded to those happening whilst running. The main results of the simulations were: (a) a more compliant tendon at low force levels (QF) led to an advantage in force-generation due to a decrease in shortening velocity of the CE, (b) a higher contractile strength and higher stiffness at the TS led to a disadvantage in force-generation at high activation levels and to an advantage at low activation levels. In addition at the high economy runners both MTUs showed an advantageous energy release during shortening, which at the QF was mainly due to a higher elongation of the SEE and at the TS mainly to the higher contractile strength. Especially at low activation levels both MTUs showed an advantageous force generation per activation and a higher energy release as compared to the low economy runners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander RM, Vernon A (1975) The dimensions of knee and ankle muscles and the forces they exert. Human Movement Stud 1:115–123

    Google Scholar 

  • Alexander RM, Bennet-Clark HC (1977) Storage of elastic strain energy in muscle and other tissues. Nature 265:114–117

    Article  PubMed  CAS  Google Scholar 

  • Alexander RM (2002) Tendon elasticity and muscle function. Comp Biochem Physiol A Mol Integr Physiol 133:1001–1011

    Article  PubMed  Google Scholar 

  • Arampatzis A, Karamanidis K, De Monte G, Stafilidis S, Morey-Klapsing G, Brüggemann GP (2004) Differences between measured and resultant joint moments during voluntary and artificially elicited isometric knee extension contraction. Clin Biomech 19:277–283

    Article  Google Scholar 

  • Arampatzis A, Stafilidis S, Demonte G, Karamanidis K, Morey-Klapsing G, Bruggemann GP (2005a) Strain and elongation of the human gastrocnemius tendon and aponeurosis during maximal plantarflexion effort. J Biomech 38(4):833–841

    Article  CAS  Google Scholar 

  • Arampatzis A, Morey-Klapsing G, Karamanidis K, Demonte G, Stafilidis S, Bruggemann GP (2005b) Differences between measured and resultant joint moments during isometric contractions at the ankle joint. J Biomech 38(4):885–892

    Article  Google Scholar 

  • Arampatzis A, Karamanidis K, Stafilidis S, Morey-Klapsing G, Demonte G, Bruggemann GP (2005c) Effect of different ankle- and knee-joint positions on gastrocnemius medialis fascicle length and EMG activity during isometric plantar flexion. J Biomech DOI:10.1016/j.jbiomech.2005.05.010

  • Behm DG, Whittle J, Button D, Power K(2001) Intermuscle differences in activation. Muscle Nerve 25(2): 236–243

    Article  Google Scholar 

  • Bobbert MF (2001) Dependence of human squat jump performance on the series elastic compliance of the triceps surae: a simulation sudy. J Exp Biol 204:533–542

    PubMed  CAS  Google Scholar 

  • Cavanagh PR, Williams KR (1982) A physiologist’s view of running economy. Med Sci Sports Exerc 14:30–35

    PubMed  CAS  Google Scholar 

  • D’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, Saltin B, Bottinelli R (2003) The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 552:499–511

    Article  PubMed  CAS  Google Scholar 

  • Daniels JT (1985) The effect of stride length variation on oxygen uptake during distance running. Med Sci Sports Exerc 17(3):332–338

    PubMed  CAS  Google Scholar 

  • Epstein M, Herzog W (1998) Theoretical Models of Skeletal Muscle. Biological and mathematical considerations, Wiley-VCH, New York

    Google Scholar 

  • Ettema GJC, van Soest AJ, Huijing PA (1990) The role of series elastic structures in prestretch-induced work enhancement during isotonic and isokinetic contractions. J Exp Biol 154:121–136

    PubMed  CAS  Google Scholar 

  • Ettema GJC (1996) Mechanical efficiency and efficiency of storage and release of series elastic energy in skeletal muscle during stretch-shorten cycles. J Exp Biol 199:1983–1997

    PubMed  CAS  Google Scholar 

  • Ettema GJC (2001) Muscle efficiency: the controversial role of elastic and mechanical energy conversion in stretch-shortening cycles. Eur J Appl Physiol 85:457–465

    Article  PubMed  CAS  Google Scholar 

  • Frontera WR, Suh D, Krivickas LS, Hughes VA, Goldstein R, Roubenoff R (2000) Skeletal muscle fiber quality in older men and women. Am J Physiol Cell Physiol 279:611–618

    Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues. 2nd Edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Günther M (1997) Computersimulation zur Synthetisierung des muskulär erzeugten menschlichen Gehens unter Verwendung eines biomechanischen Mehrkörpermodells. PhD Thesis, Physikalische Fakultät, Eberhard-Karls Universität, Tübingen

    Google Scholar 

  • Hatze H (1981) Myocybernetic control models of skeletal muscle. Characteristics and applications. University of South Africa, Pretoria

    Google Scholar 

  • Hawkins D, Hull ML (1990) A method for determining lower extremity muscle–tendon lengths during flexion/extension movements. J Biomech 23(5):487–494

    Article  PubMed  CAS  Google Scholar 

  • Heise GD, Martin PE (2001) Are variations in running economy in humans associated with ground reaction force characteristics? Eur J Appl Physiol 84:438–442

    Article  PubMed  CAS  Google Scholar 

  • Herzog W, Abrahamse SK, ter Keurs HE (1990) Theoretical determination of the force–length relations of intact human skeletal muscles using cross-bridge model. Pflugers Arch 416(1-2):113–119

    Article  PubMed  CAS  Google Scholar 

  • Herzog W, Read LJ (1991) Experimental determination of force length relations of intact human gastrocnemius muscles. Clin Biomech 6:230–238

    Article  Google Scholar 

  • Herzog W, Read LJ (1993) Lines of action and moment arms of the major orce-carrying structures crossing the human knee joint. J Anat 182:213–230

    PubMed  Google Scholar 

  • Herzog W (2000) Muscle properties and coordination during voluntary movement. J Sports Sci 18:141–152

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc Roy Soc Lond 126:136–195

    Article  Google Scholar 

  • Hof AL, Geelen BA, Van den Berg J (1983) Calf muscle moment, work and efficiency in level walking; role of series elasticity. J Biomech 16(7):523–537

    Article  PubMed  CAS  Google Scholar 

  • Hoy MG, Zajac FE, Gordon ME (1990) A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. J Biomech 23(2):157–169

    Article  PubMed  CAS  Google Scholar 

  • Huijing PA (1985) Architecture of the human gastrocnemius muscle and some functional consequences. Acta Anat 123(2):101–107

    Article  CAS  PubMed  Google Scholar 

  • Karamanidis K, Arampatzis A (2006) Mechanical and morphological properties of human quadriceps femoris and triceps surae musclefbtendon unit in relation to aging and running. J Biomech 39(3): 406–17

    PubMed  Google Scholar 

  • Kawakami Y, Ichinose Y, Fukunaga T (1998) Architectural and functional features of human triceps surae muscles during contraction. J Appl Physiol 85(2):398–404

    PubMed  CAS  Google Scholar 

  • Maganaris CN, Baltzopoulos V, Sargeant AJ (1998a)–In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. J Physiol 512: 603–614

    Article  CAS  Google Scholar 

  • Maganaris CN, Baltzopoulos V, Sargeant AJ (1998b) Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: in vivo observations in man. J Physiol 510:977–985

    Article  CAS  Google Scholar 

  • Maganaris CN (2001) Force–length characteristics of in vivo human skeletal muscle. Acta Physiol Scand 172:279–285

    Article  PubMed  CAS  Google Scholar 

  • Maganaris CN (2003) Force–length characteristics of the in vivo human gastrocnemius muscle. Clin Anat 16(3):215–223

    Article  PubMed  Google Scholar 

  • Martin PE, Morgan DW (1992) Biomechanical considerations for economical walking and running. Med Sci Sports Exerc 24(4):467–74

    PubMed  CAS  Google Scholar 

  • Muramatsu T, Muraoka T, Kawakami Y, Fukunaga T (2002) Intramuscular variability of the architecture in human medial gastocnemius muscle in vivo and its functional implication. Adv Exerc Sports Physiol 8(1):17–21

    Google Scholar 

  • Narici MV, Landoni L, Minetti AE (1992) Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur J Appl Physiol Occup Physiol 65(5):438–444

    Article  PubMed  CAS  Google Scholar 

  • Out L, Vrijkotte TGM, van Soest AJ, Bobbert MF (1996) Influence of the parameters of a human triceps surae muscle model on the isometric torque–angle relationship. J Biomech Eng 118(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Riener R, Edrich T (1999) Identification of passive elastic joint moments in the lower extremities. J Biomech 32(5):539–544

    Article  PubMed  CAS  Google Scholar 

  • Roberts TJ, Marsh RL, Weyand PG, Taylor CR (1997) Muscular force in running turkeys: the economy of minimizing work. Science 275(5303):1113–1115

    Article  PubMed  CAS  Google Scholar 

  • Roberts TJ (2002) The integrated function of muscles and tendons during locomotion. Comp Biochem Physiol A Mol Integr Physiol 133(4):1087–1099

    Article  PubMed  Google Scholar 

  • Saunders PU, Pyne DB, Telford RD, Hawley JA (2004) Factors affecting running economy in trained distance runners. Sports Med 34(7):465–485

    Article  PubMed  Google Scholar 

  • Savelberg HH, Meijer K (2003) Contribution of mono- and biarticular muscles to extending knee joint moments in runners and cyclists. J Appl Physiol 94(6):2241–2248

    PubMed  CAS  Google Scholar 

  • Savelberg HH, Meijer K (2004) The effect of age and joint angle on the proportionality of extensor and flexor strength at the knee joint. J Gerontol A Biol Sci Med Sci 59(11):1120–1128

    PubMed  Google Scholar 

  • Scovil CY, Ronsky JL (2005) Sensitivity of a Hill-based muscle model to perturbations in model parameters. J Biomech DOI: 10.1016/j.jbiomech.2005.06.005

  • van Soest AJ, Bobbert MF(1993) The contribution of muscle properties in the control of explosive movements. Biol Cybern 75:409–417

    Google Scholar 

  • Spägele T (1998) Modellierung, Simulation und Optimierung menschlicher Bewegungen. PhD Thesis. Institut A für Mechanik der Universität Stuttgart

  • Stafilidis S, Karamanidis K, Morey-Klapsing G, Demonte G, Bruggemann GP, Arampatzis A (2005) Strain and elongation of the vastus lateralis aponeurosis and tendon in vivo during maximal isometric contraction. Eur J Appl Physiol 94(3):317–322

    Article  PubMed  Google Scholar 

  • Walker SM, Schrodt GR (1974) Segment lengths and thin filament periods in skeletal muscle fibers of the Rhesus monkey and the human. Anat Rec 178:63–81

    Article  PubMed  CAS  Google Scholar 

  • Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop Relat Res 179:275–283

    Article  PubMed  Google Scholar 

  • Williams KR, Cavanagh PR (1987) Relationship between distance running mechanics, running economy, and performance. J Appl Physiol 63(3):1236–1245

    PubMed  CAS  Google Scholar 

  • Winters JM (1990). Hill-based muscle models: a system engineering perspective. In: Winters JM, Woo SL-Y (eds). Multiple muscle systems. Springer, Berlin Heidelberg New York, pp 69–93

    Google Scholar 

  • Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359–411

    PubMed  CAS  Google Scholar 

  • van Zandwijk JP, Bobbert MF, Baan GC, Huijing PA (1996) From twitsch to tetanus: performance of excitation dynamics for a twitsch in predicting titanic muscle forces. Biol Cybern 75:409–417

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adamantios Arampatzis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albracht, K., Arampatzis, A. Influence of the Mechanical Properties of the Muscle–tendon Unit on Force Generation in Runners with Different Running Economy. Biol Cybern 95, 87–96 (2006). https://doi.org/10.1007/s00422-006-0070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0070-z

Keywords

Navigation