Skip to main content
Log in

Metabolic cost of neuronal information in an empirical stimulus-response model

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The limits on maximum information that can be transferred by single neurons may help us to understand how sensory and other information is being processed in the brain. According to the efficient-coding hypothesis (Barlow, Sensory Comunication, MIT press, Cambridge, 1961), neurons are adapted to the statistical properties of the signals to which they are exposed. In this paper we employ methods of information theory to calculate, both exactly (numerically) and approximately, the ultimate limits on reliable information transmission for an empirical neuronal model. We couple information transfer with the metabolic cost of neuronal activity and determine the optimal information-to-metabolic cost ratios. We find that the optimal input distribution is discrete with only six points of support, both with and without a metabolic constraint. However, we also find that many different input distributions achieve mutual information close to capacity, which implies that the precise structure of the capacity-achieving input is of lesser importance than the value of capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou-Faycal IC, Trott MD, Shamai S (2001) The capacity of discrete-time memoryless Rayleigh-fading channels. IEEE Trans Inf Theory 47(4):1290–1301

    Article  Google Scholar 

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions, with formulas, graphs, and mathematical tables. Dover, New York

    Google Scholar 

  • Alexander RM (1996) Optima for animals. Princeton University Press, Princeton

    Google Scholar 

  • Atick JJ (1992) Could information theory provide an ecological theory of sensory processing? Netw Comput Neural Syst 3(2):213–251

    Article  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Article  PubMed  CAS  Google Scholar 

  • Baddeley R, Abbott LF, Booth MCA, Sengpiel F, Freeman T, Wakeman EA, Rolls ET (1997) Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc Roy Soc B 264:1775–1783

    Article  CAS  Google Scholar 

  • Balasubramanian V, Berry MJ (2002) A test of metabolically efficient coding in the retina. Netw Comput Neural Syst 13:531–552

    Article  Google Scholar 

  • Barlow HB (1961) Possible principles underlying the transformation of sensory messages. In: Rosenblith W (ed) Sensory Communication. MIT Press, Cambridge, pp 217–234

    Google Scholar 

  • Bernardo JM (1979) Reference posterior distributions for Bayesian inference. J Roy Stat Soc B 41:113–147

    Google Scholar 

  • Blahut R (1972) Computation of channel capacity and rate-distortion functions. IEEE Trans Inf Theory 18(4):460–473

    Article  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Google Scholar 

  • Brunel N, Nadal JP (1998) Mutual information, Fisher information, and population coding. Neural Comput 10(7):1731–1757

    Article  PubMed  CAS  Google Scholar 

  • Carandini M (2004) Amplification of trial-to-trial response variability by neurons in visual cortex. PLoS Biol 2(9):e264

    Article  PubMed  Google Scholar 

  • Chan TH, Hranilovic S, Kschischang FR (2005) Capacity-achieving probability measure for conditionally Gaussian channels with bounded inputs. IEEE Trans Inf Theory 51:2073–2088

    Article  Google Scholar 

  • Chiang M, Boyd S (2004) Geometric programming duals of channel capacity and rate distortion. IEEE Trans Inf Theory 50:245–258

    Article  Google Scholar 

  • Clarke BS, Barron AR (1990) Information-theoretic asymptotics of Bayes methods. IEEE Trans Inf Theory 36(3):453–471

    Article  Google Scholar 

  • Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    Book  Google Scholar 

  • Dauwels J (2005) Numerical computation of the capacity of continuous memoryless channels. In: Cardinal J, Cerf N, Delgrange O (eds) Proceedings of the 26th symposium on information theory in the Benelux. WIC, Brussels, pp 221–228

    Google Scholar 

  • Davis M (1980) Capacity and cutoff rate for Poisson-type channels. IEEE Trans Inf Theory 26(6):710–715

    Article  Google Scholar 

  • Dimitrov AG, Miller JP (2001) Neural coding and decoding: communication channels and quantization. Netw Comput Neural Syst 12(4):441–472

    CAS  Google Scholar 

  • Fairhall AL, Lewen GD, Bialek W, de Ruyter van Steveninck RR (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412:787–792

    Article  PubMed  CAS  Google Scholar 

  • Farkhooi F, Müller E, Nawrot MP (2011) Adaptation reduces variability of the neuronal population code. Phys Rev E 83(050):905

    Google Scholar 

  • Gallager RG (1968) Information theory and reliable communication. Wiley, New York

    Google Scholar 

  • Gastpar M, Rimoldi B, Vetterli M (2003) To code, or not to code: Lossy source-channel communication revisited. IEEE Trans Inf Theory 49(5):1147–1158

    Article  Google Scholar 

  • Grant M, Boyd S (2009) Cvx: Matlab software for disciplined convex programming (web page and software). http://stanford.edu/boyd/cvx

  • Greenwood PE, Lansky P (2005) Optimal signal estimation in neuronal models. Neural Comput 17(10):2240–2257

    Article  PubMed  Google Scholar 

  • Gremiaux A, Nowotny T, Martinez D, Lucas P, Rospars JP (2012) Modelling the signal delivered by a population of first-order neurons in a moth olfactory system. Brain Res 1434:123–135

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Meyn SP (2005) Characterization and computation of optimal distributions for channel coding. IEEE Trans Inf Theory 51(7):2336–2351

    Article  Google Scholar 

  • Ikeda S, Manton JH (2009) Capacity of a single spiking neuron channel. Neural Comput 21(6):1714–1748

    Article  PubMed  Google Scholar 

  • Jacobson H (1950) The informational capacity of the human ear. Science 112(2901):143

    Article  PubMed  CAS  Google Scholar 

  • Johnson DH, Goodman IN (2008) Inferring the capacity of the vector poisson channel with a bernoulli model. Netw Comput Neural Syst 19(1):13–33

    Article  Google Scholar 

  • Johnson N, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1. Wiley, New York

    Google Scholar 

  • Kelley JE (1960) The cutting-plane method for solving convex programs. J Soc Indus Appl Math 8(4):703–712

    Article  Google Scholar 

  • Komninakis C, Vandenberghe L, Wesel RD (2001) Capacity of the binomial channel or minimax redundancy for memoryless channels. In: Proceedings of IEEE international symposium on information theory, Washington, p 127

  • Kostal L (2010) Information capacity in the weak-signal approximation. Phys Rev E 82(026):115

    Google Scholar 

  • Kostal L (2012) Approximate information capacity of the perfect integrate-and-fire neuron using the temporal code. Brain Res 1434:136–141

    Article  PubMed  CAS  Google Scholar 

  • Kostal L, Lansky P (2010) Information transfer with small-amplitude signals. Phys Rev E 81:050,901(R)

    Google Scholar 

  • Kostal L, Lansky P (2013) Information transfer under metabolic constraints in a simple homogeneous population of olfactory neurons (manuscript submitted)

  • Kostal L, Lansky P, Rospars JP (2008) Efficient olfactory coding in the pheromone receptor neuron of a moth. PLoS Comp Biol 4:e1000,053

    Google Scholar 

  • Lansky P, Sacerdote L (2001) The Ornstein-Uhlenbeck neuronal model with signal-dependent noise. Phys Lett A 285(3–4):132–140

    Article  CAS  Google Scholar 

  • Lansky P, Pokora O, Rospars JP (2008) Classification of stimuli based on stimulus-response curves and their variability. Brain Res 1225:57–66

    Article  PubMed  CAS  Google Scholar 

  • Laughlin SB (1981) A simple coding procedure enhances a neuron’s information capacity. Z Naturforsch 36(9–10):910–912

    CAS  Google Scholar 

  • Laughlin SB, de Ruyter van Steveninck RR, Anderson JC (1998) The metabolic cost of neural information. Nat Neurosci 1(1):36–41

    Article  PubMed  CAS  Google Scholar 

  • Levy WB, Baxter RA (1996) Energy efficient neural codes. Neural Comput 8(3):531–543

    Article  PubMed  CAS  Google Scholar 

  • Levy WB, Baxter RA (2002) Energy-efficient neuronal computation via quantal synaptic failures. J Neurosci 22(11):4746–4755

    PubMed  CAS  Google Scholar 

  • Machens CK, Gollisch T, Kolesnikova O, Herz AVM (2005) Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron 47(3):447–456

    Article  PubMed  CAS  Google Scholar 

  • McDonnell MD, Flitney AP (2009) Signal acquisition via polarization modulation in single photon sources. Phys Rev E 80:060,102(R)

    Google Scholar 

  • McDonnell MD, Stocks NG (2008) Maximally informative stimuli and tuning curves for sigmoidal rate-coding neurons and populations. Phys Rev Lett 101(5):058,103

    Google Scholar 

  • McDonnell MD, Mohan A, Stricker C, Ward LM (2012) Input-rate modulation of gamma oscillations is sensitive to network topology, delays and short-term plasticity. Brain Res 1434:162–177

    Article  PubMed  CAS  Google Scholar 

  • McEliece RJ (2002) The theory of information and coding. Cambridge University Press, Cambdridge

    Book  Google Scholar 

  • Moujahid A, d’Anjou A, Torrealdea FJ (2011) Energy and information in Hodgkin-Huxley neurons. Phys Rev E 83(031):912

    Google Scholar 

  • Mountcastle VB, Poggio GF, Werner G (1963) The relation of thalamic cell response to peripheral stimuli varied over an intensive continuum. J Neurophysiol 26(5):807–834

    Google Scholar 

  • Nadal JP, Bonnasse-Gahot L (2012) Perception of categories: from coding efficiency to reaction times. Brain Res 1434:47–61

    Google Scholar 

  • Nikitin AP, Stocks NG, Morse RP, McDonnell MD (2009) Neural population coding is optimized by discrete tuning curves. Phys Rev Lett 103(138):101

    Google Scholar 

  • Pawlas Z, Klebanov LB, Prokop M, Lansky P (2008) Parameters of spike trains observed in a short time window. Neural Comput 20(5):1325–1343

    Google Scholar 

  • Quastler H (1953) Essays on the use of information theory in biology. University of Illinois Press, Champaign

    Google Scholar 

  • Quiroga RQ, Panzeri S (2009) Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci 10:173–185

    Article  Google Scholar 

  • Rieke F, de Ruyter van Steveninck RR, Warland D, Bialek W (1997) Spikes: exploring the neural code. MIT Press, Cambridge

    Google Scholar 

  • Rissanen JJ (1996) Fisher information and stochastic complexity. IEEE Trans Inf Theory 42(1):40–47

    Article  Google Scholar 

  • Sadeghi P, Vontobel PO, Shams R (2009) Optimization of information rate upper and lower bounds for channels with memory. IEEE Trans Inf Theory 55(2):663–688

    Article  Google Scholar 

  • Schreiber S, Machens CK, Herz AVM, Laughlin SB (2002) Energy-efficient coding with discrete stochastic events. Neural Comput 14:1323–1346

    Article  PubMed  Google Scholar 

  • Schroeder DJ (1999) Astronomical optics. Academic Press, San Diego

    Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18(10):3870–3896

    PubMed  CAS  Google Scholar 

  • Smith JG (1971) The information capacity of amplitude-and variance-constrained sclar gaussian channels. Inform Control 18(3):203–219

    Article  Google Scholar 

  • Stein RB (1967) The information capacity of nerve cells using a frequency code. Biophys J 7(6):797–826

    Article  PubMed  CAS  Google Scholar 

  • Stein RB, Gossen ER, Jones KE (2005) Neuronal variability: noise or part of the signal? Nat Rev Neurosci 6(5):389–397

    Article  PubMed  CAS  Google Scholar 

  • de Ruyter van Steveninck RR, Laughlin SB (1996) The rate of information transfer at graded-potential synapses. Nature 379(6566):642–644

    Article  CAS  Google Scholar 

  • Suksompong P, Berger T (2010) Capacity analysis for integrate-and-fire neurons with descending action potential thresholds. IEEE Trans Inf Theory 56(2):838–851

    Article  Google Scholar 

  • Tchamkerten A (2004) On the discreteness of capacity-achieving distributions. IEEE Trans Inf Theory 50(11):2773–2778

    Article  Google Scholar 

  • Tuckwell HC (1988) Introduction to theoretical neurobiology, vol 2. Cambridge University Press, New York

    Book  Google Scholar 

  • Verdu S (1990) On channel capacity per unit cost. IEEE Trans Inf Theory 36(5):1019–1030

    Article  Google Scholar 

  • Wainrib G, Thieullen M, Pakdaman K (2010) Intrinsic variability of latency to first-spike. Biol Cyb 103:43–56

    Article  Google Scholar 

  • Weinstock R (1974) Calculus of variations. Dover, New York

    Google Scholar 

  • Wiener MC, Richmond BJ (1999) Using response models to estimate channel capacity for neuronal classification of stationary visual stimuli using temporal coding. J Neurophysiol 82(6):2861–2875

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

L. Kostal and P. Lansky were supported by the Institute of Physiology RVO: 67985823, Centre for Neuroscience P304/12/G069 and the Grant Agency of the Czech Republic projects P103/11/0282 and P103/12/P558. M. D. McDonnell’s contribution was supported by the Australian Research Council under ARC grant DP1093425 (including an Australian Research Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubomir Kostal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostal, L., Lansky, P. & McDonnell, M.D. Metabolic cost of neuronal information in an empirical stimulus-response model. Biol Cybern 107, 355–365 (2013). https://doi.org/10.1007/s00422-013-0554-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-013-0554-6

Keywords

Navigation