Skip to main content

Advertisement

Log in

Heart failure: a model of cardiac and skeletal muscle energetic failure

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Chronic heart failure (CHF), the new epidemic in cardiology, is characterized by energetic failure of both cardiac and skeletal muscles. The failing heart wastes energy due to anatomical changes that include cavity enlargement, altered geometry, tachycardia, mitral insufficiency and abnormal loading, while skeletal muscle undergoes atrophy. Cardiac and skeletal muscles also have altered high-energy phosphate production and handling in CHF. Nevertheless, there are differences in the phenotype of myocardial and skeletal muscle myopathy in CHF: cardiomyocytes have a lower mitochondrial oxidative capacity, abnormal substrate utilisation and intracellular signalling but a maintained oxidative profile; in skeletal muscle, by contrast, mitochondrial failure is less clear, and there is altered microvascular reactivity, fibre type shifts and abnormalities in the enzymatic systems involved in energy distribution. Underlying these phenotypic abnormalities are changes in gene regulation in both cardiac and skeletal muscle cells. Here, we review the latest advances in cardiac and skeletal muscle energetic research and argue that energetic failure could be taken as a unifying mechanism leading to contractile failure, ultimately resulting in skeletal muscle energetic failure, exertional fatigue and death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baldwin KM, Haddad F (2001) Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 90:345–357

    PubMed  CAS  Google Scholar 

  2. Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76:371–422

    PubMed  CAS  Google Scholar 

  3. Fluck M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity—from gene to form and function. Rev Physiol Biochem Pharmacol 146:159–216

    PubMed  CAS  Google Scholar 

  4. Scott W, Stevens J, Binder-Macleod SA (2001) Human skeletal muscle fiber type classifications. Phys Ther 81:1810–1816

    PubMed  CAS  Google Scholar 

  5. Spangenburg EE, Booth FW (2003) Molecular regulation of individual skeletal muscle fibre types. Acta Physiol Scand 178:413–424

    PubMed  CAS  Google Scholar 

  6. Bigard AX, Boehm E, Veksler V, Mateo P, Anflous K, Ventura-Clapier R (1998) Muscle unloading induces slow to fast transitions in myofibrillar but not mitochondrial properties. Relevance to skeletal muscle abnormalities in heart failure. J Mol Cell Cardiol 30:2391–2401

    PubMed  CAS  Google Scholar 

  7. Pette D, Vrbova G (1992) Adaptation of mammalian skeletal muscle fibers to chronic stimulation. Rev Physiol Biochem Pharmacol 120:115–202

    PubMed  CAS  Google Scholar 

  8. Jackman MR, Willis WT (1996) Characteristics of mitochondria isolated from type I and IIb skeletal muscle. Am J Physiol 270:C673–C678

    PubMed  CAS  Google Scholar 

  9. Ponsot E, Zoll J, N’Guessan B, Ribera F, Lampert E, Richard R, Veksler V, Ventura-Clapier R, Mettauer B (2005) Quantitative and qualitative mitochondrial adaptations of substrates utilizations in rat cardiac and skeletal muscles. J Cell Physiol 203:479–486

    PubMed  CAS  Google Scholar 

  10. Ventura-Clapier R, Kuznetsov A, Veksler V, Boehm E, Anflous K (1998) Functional coupling of creatine kinases in muscles: species and tissue specificity. Mol Cell Biochem 184:231–247

    PubMed  CAS  Google Scholar 

  11. Ventura-Clapier R, Veksler V, Hoerter JA (1994) Myofibrillar creatine kinase and cardiac contraction. Mol Cell Biochem 133:125–144

    PubMed  Google Scholar 

  12. Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T (2006) Cardiac system bioenergetics: metabolic basis of Frank-Starling law. J Physiol 571(Pt 2):253–273

    PubMed  CAS  Google Scholar 

  13. Wyss M, Smeitink J, Wevers RA, Wallimann T (1992) Mitochondrial creatine kinase—a key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102:119–166

    PubMed  CAS  Google Scholar 

  14. Saks VA, Khuchua ZA, Vasilyeva EV, Belikova OY, Kuznetsov AV (1994) Metabolic compartmentation and substrate channelling in muscle cells—role of coupled creatine kinases in in vivo regulation of cellular respiration—a synthesis. Mol Cell Biochem 133:155–192

    PubMed  Google Scholar 

  15. Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, Tranqui L, Olivares J, Winkler K, Wiedemann F, Kunz WS (1998) Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184:81–100

    PubMed  CAS  Google Scholar 

  16. Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura-Clapier R (2001) Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ Res 89:153–159

    PubMed  CAS  Google Scholar 

  17. Saks VA, Kaambre T, Sikk P, Eimre M, Orlova E, Paju K, Piirsoo A, Appaix F, Kay L, Regitz-Zagrosek V, Fleck E, Seppet E (2001) Intracellular energetic units in red muscle cells. Biochem J 356:643–657

    PubMed  CAS  Google Scholar 

  18. Ventura-Clapier R, Kaasik A, Veksler V (2004) Structural and functional adaptations of striated muscles to CK deficiency. Mol Cell Biochem 256–257:29–41

    PubMed  Google Scholar 

  19. Vendelin M, Beraud N, Guerrero K, Andrienko T, Kuznetsov AV, Olivares J, Kay L, Saks VA (2005) Mitochondrial regular arrangement in muscle cells: a “crystal-like” pattern. Am J Physiol Cell Physiol 288:C757–C767

    PubMed  CAS  Google Scholar 

  20. Kaasik A, Veksler V, Boehm E, Novotova M, Ventura-Clapier R (2003) From energy store to energy channeling: a study in creatine kinase deficient fast skeletal muscle. FASEB J 17:708–710

    PubMed  CAS  Google Scholar 

  21. Tonkonogi M, Harris B, Sahlin K (1998) Mitochondrial oxidative function in human saponin-skinned muscle fibres: effects of prolonged exercise. J Physiol 510:279–286

    PubMed  CAS  Google Scholar 

  22. Zoll J, Sanchez H, N’Guessan B, Ribera F, Lampert E, Bigard X, Serrurier B, Fortin D, Geny B, Veksler V, Ventura-Clapier R, Mettauer B (2002) Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol 543:191–200

    PubMed  CAS  Google Scholar 

  23. Mettauer B, Zoll JSH, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R (2003) The intrinsic mitochondrial oxidative capacity of myocytes from human failing hearts is depressed and relates to disease severity but keeps normal regulatory properties. Circulation 108(suppl IV):498

    Google Scholar 

  24. Booth FW, Chakravathy MV, Spangenburg EE (2002) Exercise and gene expression: physiological regulation of the human genome through physical activity. J Physiol (Lond) 543:399–411

    CAS  Google Scholar 

  25. Adhihetty PJ, Irrcher I, Joseph AM, Ljubicic V, Hood DA (2003) Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp Physiol 88:99–107

    PubMed  CAS  Google Scholar 

  26. Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18:357–368

    PubMed  CAS  Google Scholar 

  27. Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H (2005) Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 19:786–788

    PubMed  CAS  Google Scholar 

  28. Braunwald E, Bristow MR (2000) Congestive heart failure: fifty years of progress. Circulation 102:IV14–IV23

    PubMed  CAS  Google Scholar 

  29. Katz AM (2000) Heart failure. Pathophysiology, molecular biology, and clinical management. Lippincott Williams and Wilkins, Philadelphia, Pennsylvania

    Google Scholar 

  30. Feinstein MB (1962) Effects of experimental congestive heart failure, ouabain, and asphyxia on the high-energy phosphate and creatine content of the guinea pig heart. Circ Res 10:333–346

    PubMed  CAS  Google Scholar 

  31. Furchgott RF, Lee KS (1961) High energy phosphates and the force of contraction of cardiac muscle. Circulation 24:416–432

    PubMed  CAS  Google Scholar 

  32. Ingwall JS (1993) Is cardiac failure a consequence of decreased energy reserve? Circulation 87:VII58–VII62

    Google Scholar 

  33. Ingwall JS, Weiss RG (2004) Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 95:135–145

    PubMed  CAS  Google Scholar 

  34. Ashrafian H (2002) Cardiac energetics in congestive heart failure. Circulation 105:e44–e45

    PubMed  Google Scholar 

  35. Hittinger L, Mirsky I, Shen YT, Patrick TA, Bishop SP, Vatner SF (1995) Hemodynamic mechanisms responsible for reduced subendocardial coronary reserve in dogs with severe left ventricular hypertrophy. Circulation 92:978–986

    PubMed  CAS  Google Scholar 

  36. Kiowski W, Burkart F (1988) Effects of vasodilators on the coronary circulation in congestive heart failure. Am J Cardiol 62:99E–103E

    PubMed  CAS  Google Scholar 

  37. Taegtmeyer H (2000) Metabolism—the lost child of cardiology. J Am Coll Cardiol 36:1386–1388

    PubMed  CAS  Google Scholar 

  38. Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931

    PubMed  CAS  Google Scholar 

  39. Sack MN, Rader TA, Park SH, Bastin J, McCune SA, Kelly DP (1996) Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94:2837–2842

    PubMed  CAS  Google Scholar 

  40. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    PubMed  CAS  Google Scholar 

  41. De Sousa E, Veksler V, Minajeva A, Kaasik A, Mateo P, Mayoux E, Hoerter J, Bigard X, Serrurier B, Ventura-Clapier R (1999) Subcellular creatine kinase alterations—implications in heart failure. Circ Res 85:68–76

    PubMed  Google Scholar 

  42. Dzeja PP, Pucar D, Redfield MM, Burnett JC, Terzic A (1999) Reduced activity of enzymes coupling ATP-generating with ATP-consuming processes in the failing myocardium. Mol Cell Biochem 201:33–40

    PubMed  CAS  Google Scholar 

  43. Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T, Minnemann T, Boers ME, Hadro E, Oberste-Berghaus C, Quist W, Lowell BB, Ingwall JS, Kahn BB (1999) Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest 104:1703–1714

    Article  PubMed  CAS  Google Scholar 

  44. Liao R, Jain M, Cui L, D’Agostino J, Aiello F, Luptak I, Ngoy S, Mortensen RM, Tian R (2002) Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106:2125–2131

    PubMed  CAS  Google Scholar 

  45. Taegtmeyer H (2002) Switching metabolic genes to build a better heart. Circulation 106:2043–2045

    PubMed  Google Scholar 

  46. Schaper J, Froede R, Hein St, Buck A, Hashizume H, Speiser B, Friedl A, Bleese N (1991) Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83:504–514

    PubMed  CAS  Google Scholar 

  47. Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Mitochondrial pathology in cardiac failure. Cardiovasc Res 49:17–26

    PubMed  CAS  Google Scholar 

  48. Sabbah HN, Sharov V, Riddle JM, Kono T, Lesch M, Goldstein S (1992) Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 24:1333–1347

    PubMed  CAS  Google Scholar 

  49. Sanbe A, Tanonaka K, Kobayasi R, Takeo S (1995) Effects of long-term therapy with ACE inhibitors, captopril, enalapril and trandolapril, on myocardial energy metabolism in rats with heart failure following myocardial infarction. J Mol Cell Cardiol 27:2209–2222

    PubMed  CAS  Google Scholar 

  50. Sharov VG, Goussev A, Lesch M, Goldstein S, Sabbah HN (1998) Abnormal mitochondrial function in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 30:1757–1762

    PubMed  CAS  Google Scholar 

  51. Sharov VG, Todor AV, Silverman N, Goldstein S, Sabbah HN (2000) Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol 32:2361–2367

    PubMed  CAS  Google Scholar 

  52. Ning XH, Zhang JY, Liu JB, Ye Y, Chen SH, From AHL, Bache RJ, Portman MA (2000) Signaling and expression for mitochondrial membrane proteins during left ventricular remodeling and contractile failure after myocardial infarction. J Am Coll Cardiol 36:282–287

    PubMed  CAS  Google Scholar 

  53. Gong G, Liu J, Liang P, Guo T, Hu Q, Ochiai K, Hou M, Ye Y, Wu X, Mansoor A, From AH, Ugurbil K, Bache RJ, Zhang J (2003) Oxidative capacity in failing hearts. Am J Physiol 285:H541–H548

    CAS  Google Scholar 

  54. Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196

    PubMed  CAS  Google Scholar 

  55. Beer M, Seyfarth T, Sandstede J, Landschutz W, Lipke C, Kostler H, von Kienlin M, Harre K, Hahn D, Neubauer S (2002) Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 40:1267–1274

    PubMed  CAS  Google Scholar 

  56. Neubauer S, Remkes H, Spindler M, Horn M, Wiesmann F, Prestle J, Walzel B, Ertl G, Hasenfuss G, Wallimann T (1999) Downregulation of the Na+-creatine cotransporter in failing human myocardium and in experimental heart failure. Circulation 100:1847–1850

    PubMed  CAS  Google Scholar 

  57. Ten Hove M, Chan S, Lygate C, Monfared M, Boehm E, Hulbert K, Watkins H, Clarke K, Neubauer S (2005) Mechanisms of creatine depletion in chronically failing rat heart. J Mol Cell Cardiol 38:309–313

    PubMed  Google Scholar 

  58. Tian R, Halow JM, Meyer M, Dillmann WH, Figueredo VM, Ingwall JS, Camacho SA (1998) Thermodynamic limitation for Ca2+ handling contributes to decreased contractile reserve in rat hearts. Am J Physiol 275:H2064–H2071

    PubMed  CAS  Google Scholar 

  59. Tian R, Ingwall JS (1996) Energetic basis for reduced contractile reserve in isolated rat hearts. Am J Physiol 39:H1207–H1216

    Google Scholar 

  60. Ventura-Clapier R, Garnier A, Veksler V (2004) Energy metabolism in heart failure. J Physiol 555:1–13

    PubMed  CAS  Google Scholar 

  61. Dzeja PP, Redfield MM, Burnett JC, Terzic A (2000) Failing energetics in failing hearts. Curr Cardiol Rep 2:212–217

    PubMed  CAS  Google Scholar 

  62. Nascimben L, Ingwall JS, Pauletto P, Friedrich J, Gwathmey JK, Saks V, Pessina AC, Allen PD (1996) Creatine kinase system in failing and nonfailing human myocardium. Circulation 94:1894–1901

    PubMed  CAS  Google Scholar 

  63. Zhang J (2002) Myocardial energetics in cardiac hypertrophy. Clin Exp Pharmacol Physiol 29:351–359

    PubMed  Google Scholar 

  64. Veksler V, Ventura-Clapier R (1994) In situ study of myofibrils, mitochondria and bound creatine kinases in experimental cardiomyopathies. Mol Cell Biochem 133:287–298

    PubMed  Google Scholar 

  65. Liao RL, Nascimben L, Friedrich J, Gwathmey JK, Ingwall JS (1996) Decreased energy reserve in an animal model of dilated cardiomyopathy—relationship to contractile performance. Circ Res 78:893–902

    PubMed  CAS  Google Scholar 

  66. Dolder M, Walzel B, Speer O, Schlattner U, Wallimann T (2003) Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation. J Biol Chem 278:17760–17766

    PubMed  CAS  Google Scholar 

  67. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141

    PubMed  CAS  Google Scholar 

  68. Saavedra WF, Paolocci N, St John ME, Skaf MW, Stewart GC, Xie JS, Harrison RW, Zeichner J, Mudrick D, Marban E, Kass DA, Hare JM (2002) Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart. Circ Res 90:297–304

    PubMed  CAS  Google Scholar 

  69. Saupe KW, Spindler M, Tian R, Ingwall JS (1998) Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase. Circ Res 82:898–907

    PubMed  CAS  Google Scholar 

  70. Belmadani S, Pous C, Ventura-Clapier R, Fischmeister R, Mery PF (2002) Post-translational modifications of cardiac tubulin during chronic heart failure in the rat. Mol Cell Biochem 237:39–46

    PubMed  CAS  Google Scholar 

  71. Schaper J, Speiser B, Brand T (1993) The cytoskeleton and extracellular matrix in human hearts with dilated cardiomyopathy. In: Figulla et al (eds) Idiopathic dilated cardiomyopathy. Springer, Berlin Heidelberg New York

    Google Scholar 

  72. van Bilsen M, Smeets PJ, Gilde AJ, van der Vusse GJ (2004) Metabolic remodelling of the failing heart: the cardiac burn-out syndrome? Cardiovasc Res 61:218–226

    PubMed  Google Scholar 

  73. Wagner RA, Tabibiazar R, Powers J, Bernstein D, Quertermous T (2004) Genome-wide expression profiling of a cardiac pressure overload model identifies major metabolic and signaling pathway responses. J Mol Cell Cardiol 37:1159–1170

    PubMed  CAS  Google Scholar 

  74. Barger PM, Kelly DP (2000) PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med 10:238–245

    PubMed  CAS  Google Scholar 

  75. Osorio JC, Stanley WC, Linke A, Castellari M, Diep QN, Panchal AR, Hintze TH, Lopaschuk GD, Recchia FA (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106:606–612

    PubMed  CAS  Google Scholar 

  76. Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, Utsumi H, Hamasaki N, Takeshita A (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88:529–535

    PubMed  CAS  Google Scholar 

  77. Li YY, Maisch B, Rose ML, Hengstenberg C (1997) Point mutations in mitochondrial DNA of patients with dilated cardiomyopathy. J Mol Cell Cardiol 29:2699–2709

    PubMed  CAS  Google Scholar 

  78. Scheubel RJ, Tostlebe M, Simm A, Rohrbach S, Prondzinsky R, Gellerich FN, Silber RE, Holtz J (2002) Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J Am Coll Cardiol 40:2174–2181

    PubMed  CAS  Google Scholar 

  79. Garnier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R (2003) Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol 551:491–501

    PubMed  CAS  Google Scholar 

  80. Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, Hayashidani S, Shiomi T, Kubota T, Hamasaki N, Takeshita A (2003) Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107:1418–1423

    PubMed  CAS  Google Scholar 

  81. Young JB (2001) Healing the heart with ventricular assist device therapy: mechanisms of cardiac recovery. Ann Thorac Surg 71:S210–S219

    PubMed  CAS  Google Scholar 

  82. Muller J, Wallukat G, Weng YG, Dandel M, Spiegelsberger S, Semrau S, Brandes K, Theodoridis V, Loebe M, Meyer R, Hetzer R (1997) Weaning from mechanical cardiac support in patients with idiopathic dilated cardiomyopathy. Circulation 96:542–549

    PubMed  CAS  Google Scholar 

  83. Sundell J, Engblom E, Koistinen J, Ylitalo A, Naum A, Stolen KQ, Kalliokoski R, Nekolla SG, Airaksinen KE, Bax JJ, Knuuti J (2004) The effects of cardiac resynchronization therapy on left ventricular function, myocardial energetics, and metabolic reserve in patients with dilated cardiomyopathy and heart failure. J Am Coll Cardiol 43:1027–1033

    PubMed  Google Scholar 

  84. Lee SH, Doliba N, Osbakken M, Oz M, Mancini D (1998) Improvement of myocardial mitochondrial function after hemodynamic support with left ventricular assist devices in patients with heart failure. J Thorac Cardiovasc Surg 116:344–349

    PubMed  CAS  Google Scholar 

  85. Reiken S, Wehrens XH, Vest JA, Barbone A, Klotz S, Mancini D, Burkhoff D, Marks AR (2003) Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation 107:2459–2466

    PubMed  CAS  Google Scholar 

  86. Hasenfuss G, Maier LS, Hermann HP, Luers C, Hunlich M, Zeitz O, Janssen PM, Pieske B (2002) Influence of pyruvate on contractile performance and Ca(2+) cycling in isolated failing human myocardium. Circulation 105:194–199

    PubMed  CAS  Google Scholar 

  87. del Monte F, Hajjar RJ (2003) Targeting calcium cycling proteins in heart failure through gene transfer. J Physiol 546:49–61

    PubMed  Google Scholar 

  88. Cohn JN, Johnson GR, Shabetai R, Loeb H, Tristani F, Rector T, Smith R, Fletcher R (1993) Ejection fraction, peak exercise oxygen consumption, cardiothoracic ratio, ventricular arrhythmias, and plasma norepinephrine as determinants of prognosis in heart failure. The V-HeFT VA Cooperative Studies Group. Circulation 87:VI5–V16

    PubMed  CAS  Google Scholar 

  89. Mancini D, LeJemtel T, Aaronson K (2000) Peak VO(2): a simple yet enduring standard. Circulation 101:1080–1082

    PubMed  CAS  Google Scholar 

  90. Wilson JR, Groves J, Rayos G (1996) Circulatory status and response to cardiac rehabilitation in patients with heart failure. Circulation 94:1567–1572

    PubMed  CAS  Google Scholar 

  91. Clark AL, Poole-Wilson PA, Coats A (1996) Exercise limitation in chronic heart failure: central role of the periphery. J Am Coll Cardiol 28:1092–1102

    PubMed  CAS  Google Scholar 

  92. Jondeau G, Katz SD, Zohman L, Goldberger M, McCarthy M, Bourdarias J-P, LeJemtel TH (1992) Active skeletal muscle mass and cardiopulmonary reserve. Failure to attain peak aerobic capacity during maximal bicycle exercise in patients with severe congestive heart failure. Circulation 86:1351–1356

    PubMed  CAS  Google Scholar 

  93. Mettauer B, Lampert E, Petitjean P, Bogui P, Epailly E, Schnedecker B, Geny BEB, Haberey P, Lonsdorfer J (1996) Persistent exercise intolerance following cardiac transplantation despite normal oxygen transport. Int J Sports Med 17:277–286

    PubMed  CAS  Google Scholar 

  94. Stratton JR, Kemp GJ, Daly RC, Yacoub M, Rajagopalan B (1994) Effects of cardiac transplantation on bioenergetic abnormalities of skeletal muscle in congestive heart failure. Circulation 89:1624–1631

    PubMed  CAS  Google Scholar 

  95. Sullivan MJ, Knight JD, Higginbotham MB, Cobb FR (1989) Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure. Muscle blood flow is reduced with maintenance of arterial perfusion pressure. Circulation 80:769–781

    PubMed  CAS  Google Scholar 

  96. Wilson JR, Mancini DM, Dunkman B (1993) Exertional fatigue due to skeletal muscle dysfunction in patients with heart failure. Circulation 87:470–475

    PubMed  CAS  Google Scholar 

  97. Wiener DH, Fink LI, Maris J, Jones RA, Chance B, Wilson JR (1986) Abnormal skeletal muscle bioenergetics during exercise in patients with heart failure: role of reduced muscle blood flow. Circulation 73:1127–1136

    PubMed  CAS  Google Scholar 

  98. Drexler H, Banhardt U, Meinertz T, Wollschlager H, Lehmann M, Just H (1989) Contrasting peripheral short-term and long-term effects of converting enzyme inhibition in patients with congestive heart failure. A double-blind, placebo-controlled trial. Circulation 79:491–502

    PubMed  CAS  Google Scholar 

  99. Maskin CS, Forman R, Sonnenblick EH, Frishman WH, LeJemtel TH (1983) Failure of dobutamine to increase exercise capacity despite hemodynamic improvement in severe chronic heart failure. Am J Cardiol 51:177–182

    PubMed  CAS  Google Scholar 

  100. Lang CC, Chomsky DB, Rayos G, Yeoh TK, Wilson JR (1997) Skeletal muscle mass and exercise performance in stable ambulatory patients with heart failure. J Appl Physiol 82:257–261

    PubMed  CAS  Google Scholar 

  101. Anker SD, Sharma R (2002) The syndrome of cardiac cachexia. Int J Cardiol 85:51–66

    PubMed  Google Scholar 

  102. Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, Wilson JR (1992) Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 85:1364–1373

    PubMed  CAS  Google Scholar 

  103. Schulze PC, Gielen S, Adams V, Linke A, Mobius-Winkler S, Erbs S, Kratzsch J, Hambrecht R, Schuler G (2003) Muscular levels of proinflammatory cytokines correlate with a reduced expression of insulinlike growth factor-I in chronic heart failure. Basic Res Cardiol 98:267–274

    PubMed  CAS  Google Scholar 

  104. Adams V, Jiang H, Yu J, Mobius-Winkler S, Fiehn E, Linke A, Weigl C, Schuler G, Hambrecht R (1999) Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance. J Am Coll Cardiol 33:959–965

    PubMed  CAS  Google Scholar 

  105. Filippatos GS, Kanatselos C, Manolatos DD, Vougas B, Sideris A, Kardara D, Anker SD, Kardaras F, Uhal B (2003) Studies on apoptosis and fibrosis in skeletal musculature: a comparison of heart failure patients with and without cardiac cachexia. Int J Cardiol 90:107–113

    PubMed  Google Scholar 

  106. Momken I, Lechene P, Koulmann N, Fortin D, Mateo P, Doan BT, Hoerter J, Bigard X, Veksler V, Ventura-Clapier R (2005) Impaired voluntary running capacity of creatine kinase-deficient mice. J Physiol 565:951–964

    PubMed  CAS  Google Scholar 

  107. Massie BM, Conway M, Yonge R, Frostick S, Sleight P, Ledingham J, Radda G, Rajagopalan B (1987) 31P nuclear magnetic resonance evidence of abnormal skeletal muscle metabolism in patients with congestive heart failure. Am J Cardiol 60:309–315

    PubMed  CAS  Google Scholar 

  108. Rajagopalan B, Conway MA, Massie B, Radda GK (1988) Alterations of skeletal muscle metabolism in humans studied by phosphorus 31 magnetic resonance spectroscopy in congestive heart failure. Am J Cardiol 62:53E–57E

    PubMed  CAS  Google Scholar 

  109. Okita K, Yonezawa K, Nishijima H, Hanada A, Ohtsubo M, Kohya T, Murakami T, Kitabatake A (1998) Skeletal muscle metabolism limits exercise capacity in patients with chronic heart failure. Circulation 98:1886–1891

    PubMed  CAS  Google Scholar 

  110. Mancini DM, Wilson JR, Bolinger L, Li H, Kendrick K, Chance B, Leigh JS (1994) In vivo magnetic resonance spectroscopy measurement of deoxymyoglobin during exercise in patients with heart failure. Demonstration of abnormal muscle metabolism despite adequate oxygenation. Circulation 90:500–508

    PubMed  CAS  Google Scholar 

  111. Massie BM, Conway M, Rajagopalan B, Yonge R, Frostick S, Ledingham J, Sleight P, Radda G (1988) Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. Circulation 78:320–326

    PubMed  CAS  Google Scholar 

  112. Sullivan MJ, Green HJ, Cobb FR (1990) Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 81:518–527

    PubMed  CAS  Google Scholar 

  113. Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R (2001) Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol 38:947–954

    PubMed  CAS  Google Scholar 

  114. Sabbah HN, Hansen-Smith F, Sharov VG, Kono T, Lesch M, Gengo PJ, Steffen RP, Levine TB, Goldstein S (1993) Decreased proportion of type I myofibers in skeletal muscle of dogs with chronic heart failure. Circulation 87:1729–1737

    PubMed  CAS  Google Scholar 

  115. De Sousa E, Veksler V, Bigard X, Mateo P, Ventura-Clapier R (2000) Heart failure affects mitochondrial but not myofibrillar intrinsic properties of skeletal muscle. Circulation 102:1847–1853

    PubMed  Google Scholar 

  116. Drexler H, Riede U, Munzel T, Konig H, Funke E, Jusu H (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 85:1751–1759

    PubMed  CAS  Google Scholar 

  117. Hambrecht R, Niebauer J, Fiehn E, Kalberer B, Offner B, Hauer K, Riede U, Schlierf G, Kubler W, Schuler G (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 25:1239–1249

    PubMed  CAS  Google Scholar 

  118. Lampert E, Mettauer B, Hoppeler H, Charloux A, Charpentier A, Lonsdorfer J (1996) Structure of skeletal muscle in heart transplant recipients. J Am Coll Cardiol 28:980–984

    PubMed  CAS  Google Scholar 

  119. Mettauer B, N'Guessan B, Zoll J, Ribera F, Lampert E, Doutreleau S, Veksler V, Ahres S, Geny B, Ventura-Clapier R (2002) The intrinsic functional properties of the whole oxidative phosphorylation chain and its individual complexes are preserved in the skeletal muscle mitochondria of heart failure patients. Circulation 106:616 (abstract)

    Google Scholar 

  120. Schaufelberger M, Eriksson BO, Grimby G, Held P, Swedberg K (1997) Skeletal muscle alterations in patients with chronic heart failure. Eur Heart J 18:971–980

    PubMed  CAS  Google Scholar 

  121. Williams AD, Selig S, Hare DL, Hayes A, Krum H, Patterson J, Geerling RH, Toia D, Carey MF (2004) Reduced exercise tolerance in CHF may be related to factors other than impaired skeletal muscle oxidative capacity. J Card Fail 10:141–148

    PubMed  CAS  Google Scholar 

  122. Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, Yu J, Adams V, Niebauer J, Schuler G (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98:2709–2715

    PubMed  CAS  Google Scholar 

  123. Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, Wilson JR (1989) Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle metabolic abnormalities in patients with chronic heart failure. Circulation 80:1338–1346

    PubMed  CAS  Google Scholar 

  124. De Sousa E, Lechene P, Fortin D, N’Guessan B, Belmadani S, Bigard X, Veksler V, Ventura-Clapier R (2002) Cardiac and skeletal muscle energy metabolism in heart failure: beneficial effects of voluntary activity. Cardiovasc Res 56:260–268

    PubMed  Google Scholar 

  125. De Sousa E, Veksler V, Bigard X, Mateo P, Serrurier B, Ventura-Clapier R (2001) Dual influence of disease and increased load on diaphragm muscle in heart failure. J Mol Cell Cardiol 33:699–710

    PubMed  Google Scholar 

  126. Zoll J, N'Guessan B, Ribera F, Lampert E, Fortin D, Veksler V, Bigard X, Geny B, Lonsdorfer J, Ventura Clapier R, Mettauer B (2003) Preserved response of mitochondrial function to short-term endurance training in skeletal muscle of heart transplant recipients. J Am Coll Cardiol 42:126–132

    PubMed  CAS  Google Scholar 

  127. Vescovo G, DallaLibera L, Serafini F, Leprotti C, Facchin L, Volterrani M, Ceconi C, Ambrosio GB (1998) Improved exercise tolerance after losartan and enalapril in heart failure: correlation with changes in skeletal muscle myosin heavy chain composition. Circulation 98:1742–1749

    PubMed  CAS  Google Scholar 

  128. Zoll J, Monassier L, Garnier A, N’Guessan B, Doutreleau S, Mettauer B, Veksler V, Piquard F, Ventura-Clapier R, Geny B (2006) ACE inhibition prevents myocardial infarction-induced skeletal muscle mitochondrial dysfunction. J Appl Physiol (in press)

  129. Hambrecht R, Adams V, Gielen S, Linke A, Möbius-Winkler S, Yu J, Niebauer J, Jiang H, Fiehn E, Schuler G (1999) Exercise intolerance in patients with chronic heart failure and increased expression of inducible nitric oxide synthase in the skeletal muscle. J Am Coll Cardiol 33:174–179

    PubMed  CAS  Google Scholar 

  130. Duscha BD, Kraus WE, Keteyian SJ, Sullivan MJ, Green HJ, Schahat FH, Pippen AM, Brawner CA, Blank JM, Annex BH (1999) Capillary density of skeletal muscle. A contributing mechanism for exercise intolerance in class II–III chronic heart failure independent of other peripheral alterations. J Am Coll Cardiol 33:1956–1963

    PubMed  CAS  Google Scholar 

  131. Richardson TE, Kindig CA, Musch TI, Poole DC (2003) Effects of chronic heart failure on skeletal muscle capillary hemodynamics at rest and during contractions. J Appl Physiol 95:1055–1062

    PubMed  Google Scholar 

  132. Hambrecht R, Hilbrich L, Erbs S, Gielen S, Fiehn E, Schoene N, Schuler G (2000) Correction of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral l-arginine supplementation. J Am Coll Cardiol 35:706–713

    PubMed  CAS  Google Scholar 

  133. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51

    PubMed  CAS  Google Scholar 

  134. Schulze PC, Fang J, Kassik KA, Gannon J, Cupesi M, MacGillivray C, Lee RT, Rosenthal N (2005) Transgenic overexpression of locally acting insulin-like growth factor-1 inhibits ubiquitin-mediated muscle atrophy in chronic left-ventricular dysfunction. Circ Res 97:418–426

    PubMed  CAS  Google Scholar 

  135. Song YH, Li Y, Du J, Mitch WE, Rosenthal N, Delafontaine P (2005) Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest 115:451–458

    PubMed  CAS  Google Scholar 

  136. Garnier A, Fortin D, Zoll J, N’Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43–52

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

R.V.-C. is supported by the Centre National de la Recherche Scientifique. This work was supported by an INSERM PROGRES, an “Association française contre les myopathies” and a “Fondation de France” grants. We thank James Wilding for carefully reading the manuscript and for revising the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mettauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mettauer, B., Zoll, J., Garnier, A. et al. Heart failure: a model of cardiac and skeletal muscle energetic failure. Pflugers Arch - Eur J Physiol 452, 653–666 (2006). https://doi.org/10.1007/s00424-006-0072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0072-7

Keywords

Navigation