Skip to main content

Advertisement

Log in

Regulation of TRP channels by PIP2

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Transient receptor potential (TRP) channels are regulated by a wide variety of physical and chemical factors. Recently, several members of the TRP channel family were reported to be regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2, PIP2). This review will summarize the current knowledge on PIP2 regulation of TRP channels and discuss the possibility that PIP2 is a common regulator of mammalian TRP channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abe J, Hosokawa H, Sawada Y, Matsumura K, Kobayashi S (2006) Ca2+-dependent PKC activation mediates menthol-induced desensitization of transient receptor potential M8. Neurosci Lett 397:140–144

    Article  PubMed  CAS  Google Scholar 

  2. Bandell M, Dubin AE, Petrus MJ, Orth A, Mathur J, Hwang SW, Patapoutian A (2006) High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nat Neurosci 9:493–500

    Article  PubMed  CAS  Google Scholar 

  3. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    Article  PubMed  CAS  Google Scholar 

  4. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6:709–720

    Article  PubMed  CAS  Google Scholar 

  5. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  6. Chen X, Talley EM, Patel N, Gomis A, McIntire WE, Dong B, Viana F, Garrison JC, Bayliss DA (2006) Inhibition of a background potassium channel by Gq protein alpha-subunits. Proc Natl Acad Sci USA 103:3422–3427

    Article  PubMed  CAS  Google Scholar 

  7. Chuang HH, Neuhausser WM, Julius D (2004) The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43:859–869

    Article  PubMed  CAS  Google Scholar 

  8. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2 mediated inhibition. Nature 411:957–962

    Article  PubMed  CAS  Google Scholar 

  9. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  PubMed  CAS  Google Scholar 

  10. Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    Article  PubMed  CAS  Google Scholar 

  11. Cruzblanca H, Koh DS, Hille B (1998) Bradykinin inhibits M current via phospholipase C and Ca2+ release from IP3-sensitive Ca2+ stores in rat sympathetic neurons. Proc Natl Acad Sci USA 95:7151–7156

    Article  PubMed  CAS  Google Scholar 

  12. Cukras CA, Jeliazkova I, Nichols CG (2002) The Role of NH2-terminal positive charges in the activity of inward rectifier KATP channels. J Gen Physiol 120:437–446

    Article  PubMed  CAS  Google Scholar 

  13. del Pilar GM, Nasi E (2005) A direct signaling role for phosphatidylinositol 4,5-bisphosphate (PIP2) in the visual excitation process of microvillar receptors. J Biol Chem 280:16784–16789

    Article  CAS  Google Scholar 

  14. Delmas P, Brown DA (2002) Junctional signaling microdomains: bridging the gap between the neuronal cell surface and Ca2+ stores. Neuron 36:787–790

    Article  PubMed  CAS  Google Scholar 

  15. Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6:850–862

    Article  PubMed  CAS  Google Scholar 

  16. Delmas P, Coste B, Gamper N, Shapiro MS (2005) Phosphoinositide lipid second messengers: new paradigms for calcium channel modulation. Neuron 47:179–182

    Article  PubMed  CAS  Google Scholar 

  17. Delmas P, Wanaverbecq N, Abogadie FC, Mistry M, Brown DA (2002) Signaling microdomains define the specificity of receptor-mediated InsP3 pathways in neurons. Neuron 34:209–220

    Article  PubMed  CAS  Google Scholar 

  18. Dhaka A, Viswanath V, Patapoutian A (2006) TRP ion channels and temperature sensation. Annu Rev Neurosci 29:135–161

    Article  PubMed  CAS  Google Scholar 

  19. Du X, Zhang H, Lopes CM, Mirshahi T, Rohacs T, Logothetis DE (2004) Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of Kir channels by diverse modulators. J Biol Chem 279:37271–37281

    Article  PubMed  CAS  Google Scholar 

  20. Enkvetchakul D, Jeliazkova I, Nichols CG (2005) Direct modulation of Kir channel gating by membrane phosphatidylinositol 4,5-bisphosphate. J Biol Chem 280:35785–35788

    Article  PubMed  CAS  Google Scholar 

  21. Estacion M, Sinkins WG, Schilling WP (2001) Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms. J Physiol 530:1–19

    Article  PubMed  CAS  Google Scholar 

  22. Fan Z, Makielski JC (1997) Anionic phospholipids activate ATP-sensitive potassium channels. J Biol Chem 272:5388–5395

    Article  PubMed  CAS  Google Scholar 

  23. Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB (1995) Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell 83:1037–1046

    Article  PubMed  CAS  Google Scholar 

  24. Ford CP, Stemkowski PL, Smith PA (2004) Possible role of phosphatidylinositol 4,5 bisphosphate in luteinizing hormone releasing hormone-mediated M-current inhibition in bullfrog sympathetic neurons. Eur J Neurosci 20:2990–2998

    Article  PubMed  Google Scholar 

  25. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    Article  PubMed  CAS  Google Scholar 

  26. Gamper N, Reznikov V, Yamada Y, Yang J, Shapiro MS (2004) Phosphotidylinositol 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. J Neurosci 24:10980–10992

    Article  PubMed  CAS  Google Scholar 

  27. Golebiewska U, Gambhir A, Hangyas-Mihalyne G, Zaitseva I, Radler J, McLaughlin S (2006) Membrane-bound basic peptides sequester multivalent (PIP2), but not monovalent (PS), acidic lipids. Biophys J 91:588–599

    Article  PubMed  CAS  Google Scholar 

  28. Gu Y, Oberwinkler J, Postma M, Hardie RC (2005) Mechanisms of light adaptation in Drosophila photoreceptors. Curr Biol 15:1228–1234

    Article  PubMed  CAS  Google Scholar 

  29. Gwanyanya A, Sipido K, Vereecke J, Mubagwa K (2006) ATP- and PIP2-dependence of the magnesium-inhibited, TRPM7-like cation channel in cardiac myocytes. Am J Physiol Cell Physiol

  30. Hardie RC (2003) Regulation of TRP channels via lipid second messengers. Annu Rev Physiol 65:735–759

    Article  PubMed  CAS  Google Scholar 

  31. Hardie RC (2003) TRP channels in Drosophila photoreceptors: the lipid connection. Cell Calcium 33:385–393

    Article  PubMed  CAS  Google Scholar 

  32. Hardie RC, Raghu P (2001) Visual transduction in Drosophila. Nature 413:186–193

    Article  PubMed  CAS  Google Scholar 

  33. Hardie RC, Raghu P, Moore S, Juusola M, Baines RA, Sweeney ST (2001) Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30:149–159

    Article  PubMed  CAS  Google Scholar 

  34. Hilgemann DW, Ball R (1996) Regulation of cardiac Na+/Ca2+ exchange and KATP potassium channels by PIP2. Science 273:956–959

    Article  PubMed  CAS  Google Scholar 

  35. Hilgemann DW, Feng S, Nasuhoglu C (2001) The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001:RE19

    Article  PubMed  CAS  Google Scholar 

  36. Hirono M, Denis CS, Richardson GP, Gillespie PG (2004) Hair cells require phosphatidylinositol 4,5-bisphosphate for mechanical transduction and adaptation. Neuron 44:309–320

    Article  PubMed  CAS  Google Scholar 

  37. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  PubMed  CAS  Google Scholar 

  38. Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbg. Nature 391:803–806

    Article  PubMed  CAS  Google Scholar 

  39. Jin X, Touhey J, Gaudet R (2006) Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem 281:25006–25010

    Article  PubMed  CAS  Google Scholar 

  40. Kavran JM, Klein DE, Lee A, Falasca M, Isakoff SJ, Skolnik EY, Lemmon MA (1998) Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem 273:30497–30508

    Article  PubMed  CAS  Google Scholar 

  41. Kiselyov K, Mignery GA, Zhu MX, Muallem S (1999) The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Mol Cell 4:423–429

    Article  PubMed  CAS  Google Scholar 

  42. Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482

    Article  PubMed  CAS  Google Scholar 

  43. Kobrinsky E, Mirshahi T, Zhang H, Jin T, Logothetis DE (2000) Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+ current desensitization. Nature Cell Biology 2:507–514

    Article  PubMed  CAS  Google Scholar 

  44. Kozak JA, Matsushita M, Nairn AC, Cahalan MD (2005) Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. J Gen Physiol 126:499–514

    Article  PubMed  CAS  Google Scholar 

  45. Kuhn FJ, Heiner I, Luckhoff A (2005) TRPM2: a calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose. Pflugers Arch 451:212–219

    Article  PubMed  CAS  Google Scholar 

  46. Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926

    Article  PubMed  CAS  Google Scholar 

  47. Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289

    Article  PubMed  CAS  Google Scholar 

  48. Lee J, Cha SK, Sun TJ, Huang C-L (2005) PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. J Gen Physiol 126:439–451

    Article  PubMed  CAS  Google Scholar 

  49. Li Y, Gamper N, Hilgemann DW, Shapiro MS (2005) Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25:9825–9835

    Article  PubMed  CAS  Google Scholar 

  50. Liu B, Qin F (2005) Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25:1674–1681

    Article  PubMed  CAS  Google Scholar 

  51. Liu B, Zhang C, Qin F (2005) Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5-bisphosphate. J Neurosci 25:4835–4843

    Article  PubMed  CAS  Google Scholar 

  52. Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci USA 100:15160–15165

    Article  PubMed  CAS  Google Scholar 

  53. Lopes CMB, Zhang H, Rohacs T, Jin T, Logothetis DE (2002) Alterations in conserved Kir channel–PIP2 interactions underlie channelopathies. Neuron 34:933–944

    Article  PubMed  CAS  Google Scholar 

  54. Ma R, Li WP, Rundle D, Kong J, Akbarali HI, Tsiokas L (2005) PKD2 functions as an epidermal growth factor-activated plasma membrane channel. Mol Cell Biol 25:8285–8298

    Article  PubMed  CAS  Google Scholar 

  55. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  56. McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    Article  PubMed  CAS  Google Scholar 

  57. Mohapatra DP, Nau C (2003) Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway. J Biol Chem 278:50080–50090

    Article  PubMed  CAS  Google Scholar 

  58. Nasuhoglu C, Feng S, Mao Y, Shammat I, Yamamato M, Earnest S, Lemmon M, Hilgemann DW (2002) Modulation of cardiac PIP2 by cardioactive hormones and other physiologically relevant interventions. Am J Physiol Cell Physiol 283:C223–C234

    PubMed  CAS  Google Scholar 

  59. Nilius B, Mahieu F (2006) A road map for TR(I)Ps. Mol Cell 22:297–307

    Article  PubMed  CAS  Google Scholar 

  60. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+-activated cation channel TRPM4 isregulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478

    Article  PubMed  CAS  Google Scholar 

  61. Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005) Gating of TRP channels: a voltage connection? J Physiol 567:35–44

    Article  PubMed  CAS  Google Scholar 

  62. Nishida M, MacKinnon R (2002) Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Cell 111:957–965

    Article  PubMed  CAS  Google Scholar 

  63. O’Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch 451:193–203

    Article  PubMed  CAS  Google Scholar 

  64. Pegan S, Arrabit C, Zhou W, Kwiatkowski W, Collins A, Slesinger PA, Choe S (2005) Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat Neurosci 8:279–287

    Article  PubMed  CAS  Google Scholar 

  65. Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R (2003) TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci USA 100:15166–15171

    Article  PubMed  CAS  Google Scholar 

  66. Premkumar LS, Raisinghani M, Pingle SC, Long C, Pimentel F (2005) Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J Neurosci 25:11322–11329

    Article  PubMed  CAS  Google Scholar 

  67. Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300:1284–1288

    Article  PubMed  CAS  Google Scholar 

  68. Putney JW (2005) Physiological mechanisms of TRPC activation. Pflugers Arch 451:29–34

    Article  PubMed  CAS  Google Scholar 

  69. Reid G, Flonta ML (2001) Physiology. Cold current in thermoreceptive neurons. Nature 413:480

    Article  PubMed  CAS  Google Scholar 

  70. Rohacs T, Chen J, Prestwich GD, Logothetis DE (1999) Distinct specificities of inwardly rectifying K+ channels for phosphoinositides. J Biol Chem 274:36065–36072

    Article  PubMed  CAS  Google Scholar 

  71. Rohacs T, Lopes C, Mirshahi T, Jin T, Zhang H, Logothetis DE (2002) Assaying phosphatidylinositol bisphosphate regulation of potassium channels. Methods Enzymol 345:71–92

    Article  PubMed  Google Scholar 

  72. Rohacs T, Lopes CM, Jin T, Ramdya PP, Molnar Z, Logothetis DE (2003) Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc Natl Acad Sci USA 100:745–750

    Article  PubMed  CAS  Google Scholar 

  73. Rohacs T, Lopes CMB, Michailidis I, Logothetis DE (2005) PI(4,5)2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8:626–634

    Article  PubMed  CAS  Google Scholar 

  74. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat Cell Biol 4:329–336

    PubMed  CAS  Google Scholar 

  75. Shyng SL, Barbieri A, Gumusboga A, Cukras C, Pike L, Davis JN, Stahl PD, Nichols CG (2000) Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase. Proc Natl Acad Sci USA 97:937–941

    Article  PubMed  CAS  Google Scholar 

  76. Shyng SL, Cukras CA, Harwood J, Nichols CG (2000) Structural determinants of PIP2 regulation of inward rectifier KATP channels. J Gen Physiol 116:599–608

    Article  PubMed  CAS  Google Scholar 

  77. Suh BC, Hille B (2002) Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35:507–520

    Article  PubMed  CAS  Google Scholar 

  78. Suh BC, Hille B (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 15:370–378

    Article  PubMed  CAS  Google Scholar 

  79. Sui JL, Petit Jacques J, Logothetis DE (1998) Activation of the atrial KACh channel by the betagamma subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc Natl Acad Sci USA 95:1307–1312

    Article  PubMed  CAS  Google Scholar 

  80. Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, Fleig A (2004) Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci USA 101:6009–6014

    Article  PubMed  CAS  Google Scholar 

  81. Varnai P, Rother KI, Balla T (1999) Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 274:10983–10989

    Article  PubMed  CAS  Google Scholar 

  82. Wang C, Wang K, Wang W, Cui Y, Fan Z (2002) Compromised ATP binding as a mechanism of phosphoinositide modulation of ATP-sensitive K+ channels. FEBS Lett 532:177–182

    Article  PubMed  CAS  Google Scholar 

  83. Winks JS, Hughes S, Filippov AK, Tatulian L, Abogadie FC, Brown DA, Marsh SJ (2005) Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J Neurosci 25:3400–3413

    Article  PubMed  CAS  Google Scholar 

  84. Wu L, Bauer CS, Zhen XG, Xie C, Yang J (2002) Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419:947–952

    Article  PubMed  CAS  Google Scholar 

  85. Zeng WZ, Li XJ, Hilgemann DW, Huang CL (2003) Protein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. J Biol Chem 278:16852–16856

    Article  PubMed  CAS  Google Scholar 

  86. Zhang H, Craciun LC, Mirshahi T, Rohacs T, Lopes CMB, Jin T, Logothetis DE (2003) PIP2 activates KCNQ channels and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37:963–975

    Article  PubMed  CAS  Google Scholar 

  87. Zhang H, He C, Yan X, Mirshahi T, Logothetis DE (1999) Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nature Cell Biology 1:183–188

    Article  PubMed  CAS  Google Scholar 

  88. Zhang L, Lee JK, John SA, Uozumi N, Kodama I (2004) Mechanosensitivity of GIRK channels is mediated by protein kinase C-dependent channel-phosphatidylinositol 4,5-bisphosphate interaction. J Biol Chem 279:7037–7047

    Article  PubMed  CAS  Google Scholar 

  89. Zhang Z, Okawa H, Wang Y, Liman ER (2005) Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 280:39185–39192

    Article  PubMed  CAS  Google Scholar 

  90. Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The insightful comments of Dr. John Reeves are highly appreciated. The author is also indebted to the financial support of the American Heart Association, the Alexander and Alexandrine Sinsheimer Foundation and the UMDNJ Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Rohacs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohacs, T. Regulation of TRP channels by PIP2 . Pflugers Arch - Eur J Physiol 453, 753–762 (2007). https://doi.org/10.1007/s00424-006-0153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0153-7

Keywords

Navigation