Skip to main content
Log in

Actin and dynamin recruitment and the lack thereof at exo- and endocytotic sites in PC12 cells

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Protein recruitment during endocytosis is well characterized in fibroblasts. Since fibroblasts do not engage in regulated exocytosis, only information about protein recruitment during constitutive endocytosis is provided. Furthermore, the cortical actin of fibroblasts is characterized by stress fibers rather than a thick cortical meshwork. A cell model, which differs in these features, could provide insight into the heterogeneity of protein recruitment to constitutive and exocytosis coupled endocytotic areas. Therefore, this study investigates the sequence of protein recruitment in PC12 cells, a well documented exocytotic cell model with thick actin cortex. Using real time total-internal-reflection fluorescence microscopy it was found that at the plasma membrane steady, but not transient, dynamin-1-EGFP or -mCherry fluorescence spots that rapidly dimmed coincided with markers for constitutive endocytotic such as clathrin-LC-dsRed and transferrin-receptor-pHluorin. Clathrin-LC-dsRed and dynamin-1-EGFP were further used to determine the temporal sequence of protein recruitment to areas of constitutive endocytosis. mCherry- and EGFP-β-actin, Arp-3-EGFP and EGFP-mAbp1 were slowly recruited before the dynamin-1-mCherry fluorescence dimmed, but their fluorescence peaked after the loss of clathrin-LC-dsRed commenced. Furthermore, mCherry-β-actin fluorescence increased before exocytosis, indicating redistribution prior to release. Also, no average dynamin-1-mCherry recruitment was observed within 50 s to regions of exocytosis marked by NPY-mGFP. This indicates that the temporal–spatial coupling between regulated exo-and endocytosis is rather limited in PC12 cells. Furthermore, the time course of the protein recruitment to constitutive endocytotic sites might depend on the subcellular morphology such as the size of the actin cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

Abbreviations

PC12:

pheochromocytoma cell

NPY:

neuropeptide Y

Arp-3:

actin-related protein 3

mAbp1:

mouse actin-binding protein 1

clathrin-LC:

light chain

EGFP:

enhanced green fluorescence protein

mGFP:

monomeric green fluorescence protein

dsRed:

Descosoma coral red fluorescence protein

(c − a):

circle minus annulus

TIRF-M:

total-internal-reflection fluorescence microscopy

References

  1. Anderson RG, Vasile E, Mello RJ, Brown MS, Goldstein JL (1978) Immunocytochemical visualization of coated pits and vesicles in human fibroblasts: relation to low density lipoprotein receptor distribution. Cell 15:919–933

    Article  PubMed  CAS  Google Scholar 

  2. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774

    Article  PubMed  CAS  Google Scholar 

  3. Barg S, Machado JD (2008) Compensatory endocytosis in chromaffin cells. Acta Physiol (Oxf) 192:195–201

    CAS  Google Scholar 

  4. Benesch S, Polo S, Lai FP, Anderson KI, Stradal TE, Wehland J, Rottner K (2005) N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits. J Cell Sci 118:3103–3115

    Article  PubMed  CAS  Google Scholar 

  5. Cao H, Garcia F, McNiven MA (1998) Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9:2595–2609

    PubMed  CAS  Google Scholar 

  6. Felmy F (2007) Modulation of cargo release from dense core granules by size and actin network. Traffic 8:983–997

    Article  PubMed  CAS  Google Scholar 

  7. Gasman S, Chasserot-Golaz S, Malacombe M, Way M, Bader MF (2004) Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments. Mol Biol Cell 15:520–531

    Article  PubMed  CAS  Google Scholar 

  8. Graham ME, O’Callaghan DW, McMahon HT, Burgoyne RD (2002) Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size. Proc Natl Acad Sci U S A 99:7124–7129

    Article  PubMed  CAS  Google Scholar 

  9. Harata NC, Aravanis AM, Tsien RW (2006) Kiss-and-run and full-collapse fusion as modes of exo–endocytosis in neurosecretion. J Neurochem 97:1546–1570

    Article  PubMed  CAS  Google Scholar 

  10. Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344

    Article  PubMed  CAS  Google Scholar 

  11. Holroyd P, Lang T, Wenzel D, De Camilli P, Jahn R (2002) Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells. Proc Natl Acad Sci USA 99:16806–16811

    Article  PubMed  CAS  Google Scholar 

  12. Jeng RL, Welch MD (2001) Cytoskeleton: actin and endocytosis—no longer the weakest link. Curr Biol 11:R691–R694

    Article  PubMed  CAS  Google Scholar 

  13. Johns LM, Levitan ES, Shelden EA, Holz RW, Axelrod D (2001) Restriction of secretory granule motion near the plasma membrane of chromaffin cells. J Cell Biol 153:177–190

    Article  PubMed  CAS  Google Scholar 

  14. Kessels MM, Engqvist-Goldstein AE, Drubin DG (2000) Association of mouse actin-binding protein 1 (mAbp1/SH3P7), an Src kinase target, with dynamic regions of the cortical actin cytoskeleton in response to Rac1 activation. Mol Biol Cell 11:393–412

    PubMed  CAS  Google Scholar 

  15. Kessels MM, Engqvist-Goldstein AE, Drubin DG, Qualmann B (2001) Mammalian Abp1, a signal-responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. J Cell Biol 153:351–366

    Article  PubMed  CAS  Google Scholar 

  16. Kochubey O, Majumdar A, Klingauf J (2006) Imaging clathrin dynamics in Drosophila melanogaster hemocytes reveals a role for actin in vesicle fission. Traffic 7:1614–1627

    Article  PubMed  CAS  Google Scholar 

  17. Lang T, Wacker I, Wunderlich I, Rohrbach A, Giese G, Soldati T, Almers W (2000) Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys J 78:2863–2877

    Article  PubMed  CAS  Google Scholar 

  18. Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6:112–126

    Article  PubMed  CAS  Google Scholar 

  19. Lee DW, Wu X, Eisenberg E, Greene LE (2006) Recruitment dynamics of GAK and auxilin to clathrin-coated pits during endocytosis. J Cell Sci 119:3502–3512

    Article  PubMed  CAS  Google Scholar 

  20. Li D, Xiong J, Qu A, Xu T (2004) Three-dimensional tracking of single secretory granules in live PC12 cells. Biophys J 87:1991–2001

    Article  PubMed  CAS  Google Scholar 

  21. Loerke D, Wienisch M, Kochubey O, Klingauf J (2005) Differential control of clathrin subunit dynamics measured with EW-FRAP microscopy. Traffic 6:918–929

    Article  PubMed  CAS  Google Scholar 

  22. Merrifield CJ, Feldman ME, Wan L, Almers W (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4:691–698

    Article  PubMed  CAS  Google Scholar 

  23. Merrifield CJ, Perrais D, Zenisek D (2005) Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121:593–606

    Article  PubMed  CAS  Google Scholar 

  24. Merrifield CJ, Qualmann B, Kessels MM, Almers W (2004) Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur J Cell Biol 83:13–18

    Article  PubMed  CAS  Google Scholar 

  25. Michael DJ, Geng X, Cawley NX, Loh YP, Rhodes CJ, Drain P, Chow RH (2004) Fluorescent cargo proteins in pancreatic beta-cells: design determines secretion kinetics at exocytosis. Biophys J 87:L03–L05

    Article  PubMed  CAS  Google Scholar 

  26. Mueller VJ, Wienisch M, Nehring RB, Klingauf J (2004) Monitoring clathrin-mediated endocytosis during synaptic activity. J Neurosci 24:2004–2012

    Article  PubMed  CAS  Google Scholar 

  27. Nakata T, Hirokawa N (1992) Organization of cortical cytoskeleton of cultured chromaffin cells and involvement in secretion as revealed by quick-freeze, deep-etching, and double-label immunoelectron microscopy. J Neurosci 12:2186–2197

    PubMed  CAS  Google Scholar 

  28. Pearse BM (1976) Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci USA 73:1255–1259

    Article  PubMed  CAS  Google Scholar 

  29. Perrais D, Kleppe IC, Taraska JW, Almers W (2004) Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells. J Physiol 560:413–428

    Article  PubMed  CAS  Google Scholar 

  30. Perrais D, Merrifield CJ (2005) Dynamics of endocytic vesicle creation. Dev Cell 9:581–592

    Article  PubMed  CAS  Google Scholar 

  31. Qualmann B, Kessels MM (2002) Endocytosis and the cytoskeleton. Int Rev Cytol 220:93–144

    Article  PubMed  CAS  Google Scholar 

  32. Qualmann B, Kessels MM, Kelly RB (2000) Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol 150:F111–F116

    Article  PubMed  CAS  Google Scholar 

  33. Rorsman P, Bokvist K, Ammala C, Eliasson L, Renstrom E, Gabel J (1994) Ion channels, electrical activity and insulin secretion. Diabete Metab 20:138–145

    PubMed  CAS  Google Scholar 

  34. Schafer DA (2002) Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol 14:76–81

    Article  PubMed  CAS  Google Scholar 

  35. Sever S, Damke H, Schmid SL (2000) Garrotes, springs, ratchets, and whips: putting dynamin models to the test. Traffic 1:385–392

    Article  PubMed  CAS  Google Scholar 

  36. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  37. Steyer JA, Almers W (2001) A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2:268–275

    Article  PubMed  CAS  Google Scholar 

  38. Svitkina TM, Borisy GG (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145:1009–1026

    Article  PubMed  CAS  Google Scholar 

  39. Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci USA 100:2070–2075

    Article  PubMed  CAS  Google Scholar 

  40. Tsuboi T, McMahon HT, Rutter GA (2004) Mechanisms of dense core vesicle recapture following “kiss and run” (“cavicapture”) exocytosis in insulin-secreting cells. J Biol Chem 279:47115–47124

    Article  PubMed  CAS  Google Scholar 

  41. Tsuboi T, Rutter GA (2003) Multiple forms of “kiss-and-run” exocytosis revealed by evanescent wave microscopy. Curr Biol 13:563–567

    Article  PubMed  CAS  Google Scholar 

  42. Tsuboi T, Terakawa S, Scalettar BA, Fantus C, Roder J, Jeromin A (2002) Sweeping model of dynamin activity. Visualization of coupling between exocytosis and endocytosis under an evanescent wave microscope with green fluorescent proteins. J Biol Chem 277:15957–15961

    Article  PubMed  CAS  Google Scholar 

  43. Vitale ML, Seward EP, Trifaro JM (1995) Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14:353–363

    Article  PubMed  CAS  Google Scholar 

  44. Volkmann N, Amann KJ, Stoilova-McPhie S, Egile C, Winter DC, Hazelwood L, Heuser JE, Li R, Pollard TD, Hanein D (2001) Structure of Arp2/3 complex in its activated state and in actin filament branch junctions. Science 293:2456–2459

    Article  PubMed  CAS  Google Scholar 

  45. Welch MD, DePace AH, Verma S, Iwamatsu A, Mitchison TJ (1997) The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J Cell Biol 138:375–384

    Article  PubMed  CAS  Google Scholar 

  46. Yarar D, Waterman-Storer CM, Schmid SL (2005) A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol Biol Cell 16:964–975

    Article  PubMed  CAS  Google Scholar 

  47. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916

    Article  PubMed  CAS  Google Scholar 

  48. Zoncu R, Perera RM, Sebastian R, Nakatsu F, Chen H, Balla T, Ayala G, Toomre D, De Camilli PV (2007) Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci USA 104:3793–3798

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Prof. Wolfhard Almers for providing the laboratory space and resources and helpful comments during this study. I thank Mike Hoppa for technical support on mCherry-fusion constructs and many thanks for his comments on the early version of the manuscript. I thank Nick Lesica for critical reading of the manuscript. I thank Prof. Benedikt Grothe for general support. FF was supported by the Max-Planck-Society. This work was supported by NIH grant MH60600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Felmy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felmy, F. Actin and dynamin recruitment and the lack thereof at exo- and endocytotic sites in PC12 cells. Pflugers Arch - Eur J Physiol 458, 403–417 (2009). https://doi.org/10.1007/s00424-008-0623-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0623-1

Keywords

Navigation