Skip to main content
Log in

Contribution of calcium-conducting channels to the transport of zinc ions

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Zinc (Zn) is a vital nutrient participating in a myriad of biological processes. The mechanisms controlling its transport through the plasma membrane are far from being completely understood. Two families of eukaryotic zinc transporters are known to date: the Zip (SLC39) and ZnT (SLC30) proteins. In addition, some types of plasmalemmal calcium (Ca)-conducting channels are implied in the cellular uptake of zinc. These ion channels are currently described as systems dedicated to the transport of Ca (and, to some extent, sodium (Na) ions). However, a growing body of evidence supports the view that some of them can also function as pathways for Zn transport. For instance, voltage-gated Ca channels and some types of glutamate-gated receptors have long been known to allow the entry of Zn. More recently, members of the TRP superfamily, another type of Ca-conducting channels, have been shown to permit the uptake of Zn into eukaryotic cells. The aim of this review article is to present the current knowledge supporting the notion that Ca-conducting channels take part in the plasmalemmal transport of Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams DJ, Dwyer TM, Hille B (1980) The permeability of endplate channels to monovalent and divalent metal cations. J Gen Physiol 75(5):493–510

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez-Collazo J, Diaz-Garcia CM, Lopez-Medina AI, Vassort G, Alvarez JL (2012) Zinc modulation of basal and beta-adrenergically stimulated L-type Ca(2+) current in rat ventricular cardiomyocytes: consequences in cardiac diseases. Pflugers Arch 464(5):459–470

    Article  CAS  PubMed  Google Scholar 

  3. Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201

    Article  CAS  PubMed  Google Scholar 

  4. Atar D, Backx PH, Appel MM, Gao WD, Marban E (1995) Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J Biol Chem 270(6):2473–2477

    Article  CAS  PubMed  Google Scholar 

  5. Bassi MT, Manzoni M, Monti E, Pizzo MT, Ballabio A, Borsani G (2000) Cloning of the gene encoding a novel integral membrane protein, mucolipidin- and identification of the two major founder mutations causing mucolipidosis type IV. Am J Hum Genet 67(5):1110–1120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bozym RA, Chimienti F, Giblin LJ, Gross GW, Korichneva I, Li Y, Libert S, Maret W, Parviz M, Frederickson CJ, Thompson RB (2010) Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp Biol Med (Maywood) 235(6):741–750

    Article  CAS  Google Scholar 

  7. Braun M, Ramracheya R, Rorsman P (2012) Autocrine regulation of insulin secretion. Diabetes Obes Metab 14(Suppl 3):143–151

    Article  CAS  PubMed  Google Scholar 

  8. Cantero Mdel R, Cantiello HF (2011) Effect of lithium on the electrical properties of polycystin-2 (TRPP2). Eur Biophys J 40(9):1029–1042

    Article  PubMed  Google Scholar 

  9. Chausmer AB (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17(2):109–115

    Article  CAS  PubMed  Google Scholar 

  10. Cheng C, Reynolds IJ (1998) Calcium-sensitive fluorescent dyes can report increases in intracellular free zinc concentration in cultured forebrain neurons. J Neurochem 71(6):2401–2410

    Article  CAS  PubMed  Google Scholar 

  11. Clapham DE (2003) TRP channels as cellular sensors. Nature 426(6966):517–524

    Article  CAS  PubMed  Google Scholar 

  12. Colvin RA, Davis N, Nipper RW, Carter PA (2000) Zinc transport in the brain: routes of zinc influx and efflux in neurons. J Nutr 130(5S Suppl):1484S–1487S

    CAS  PubMed  Google Scholar 

  13. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281(34):24085–24089

    Article  CAS  PubMed  Google Scholar 

  14. Dietz RM, Weiss JH, Shuttleworth CW (2008) Zn2+ influx is critical for some forms of spreading depression in brain slices. J Neurosci 28(32):8014–8024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455(7215):992–996

    Article  CAS  PubMed  Google Scholar 

  16. Dong XP, Wang X, Xu H (2010) TRP channels of intracellular membranes. J Neurochem 113(2):313–328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Eichelsdoerfer JL, Evans JA, Slaugenhaupt SA, Cuajungco MP (2010) Zinc dyshomeostasis is linked with the loss of mucolipidosis IV-associated TRPML1 ion channel. J Biol Chem 285(45):34304–34308

    Article  CAS  PubMed  Google Scholar 

  18. Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763(7):711–722

    Article  CAS  PubMed  Google Scholar 

  19. Eide DJ (2011) The oxidative stress of zinc deficiency. Metallomics 3(11):1124–1129

    Article  CAS  PubMed  Google Scholar 

  20. Frassinetti S, Bronzetti G, Caltavuturo L, Cini M, Croce CD (2006) The role of zinc in life: a review. J Environ Pathol Toxicol Oncol 25(3):597–610

    Article  CAS  PubMed  Google Scholar 

  21. Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Mueller RN, Zeng Y, Balaji RV, Masalha R, Thompson RB, Fierke CA, Sarvey JM, de Valdenebro M, Prough DS, Zornow MH (2006) Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 198(2):285–293

    Article  CAS  PubMed  Google Scholar 

  22. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6(6):449–462

    Article  CAS  PubMed  Google Scholar 

  23. Freund WD, Reddig S (1994) AMPA/Zn(2+)-induced neurotoxicity in rat primary cortical cultures: involvement of L-type calcium channels. Brain Res 654(2):257–264

    Article  CAS  PubMed  Google Scholar 

  24. Fukuda J, Kawa K (1977) Permeation of manganese, cadmium, zinc, and beryllium through calcium channels of an insect muscle membrane. Science 196(4287):309–311

    Article  CAS  PubMed  Google Scholar 

  25. Georgiev P, Okkenhaug H, Drews A, Wright D, Lambert S, Flick M, Carta V, Martel C, Oberwinkler J, Raghu P (2010) TRPM channels mediate zinc homeostasis and cellular growth during Drosophila larval development. Cell Metab 12(4):386–397

    Article  CAS  PubMed  Google Scholar 

  26. Gibon J, Tu P, Bohic S, Richaud P, Arnaud J, Zhu M, Boulay G, Bouron A (2011) The over-expression of TRPC6 channels in HEK-293 cells favours the intracellular accumulation of zinc. Biochim Biophys Acta 1808(12):2807–2818

    Article  CAS  PubMed  Google Scholar 

  27. Gyulkhandanyan AV, Lee SC, Bikopoulos G, Dai F, Wheeler MB (2006) The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+ channel. J Biol Chem 281(14):9361–9372

    Article  CAS  PubMed  Google Scholar 

  28. Gyulkhandanyan AV, Lu H, Lee SC, Bhattacharjee A, Wijesekara N, Fox JE, MacDonald PE, Chimienti F, Dai FF, Wheeler MB (2008) Investigation of transport mechanisms and regulation of intracellular Zn2+ in pancreatic alpha-cells. J Biol Chem 283(15):10184–10197

    Article  CAS  PubMed  Google Scholar 

  29. Hagiwara S, Byerly L (1981) Calcium channel. Annu Rev Neurosci 4:69–125

    Article  CAS  PubMed  Google Scholar 

  30. Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr Biol 13(13):1153–1158

    Article  CAS  PubMed  Google Scholar 

  31. Hu H, Bandell M, Petrus MJ, Zhu MX, Patapoutian A (2009) Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol 5(3):183–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Jia Y, Jeng JM, Sensi SL, Weiss JH (2002) Zn2+ currents are mediated by calcium-permeable AMPA/kainate channels in cultured murine hippocampal neurones. J Physiol 543(Pt 1):35–48

    Article  CAS  PubMed  Google Scholar 

  33. Kawa K (1979) Zinc-dependent action potentials in giant neurons of the snail, Euhadra quaestia. J Membr Biol 49(4):325–344

    Article  CAS  PubMed  Google Scholar 

  34. Kerchner GA, Canzoniero LM, Yu SP, Ling C, Choi DW (2000) Zn2+ current is mediated by voltage-gated Ca2+ channels and enhanced by extracellular acidity in mouse cortical neurones. J Physiol 528(Pt 1):39–52

    Article  CAS  PubMed  Google Scholar 

  35. Kiselyov K, Colletti GA, Terwilliger A, Ketchum K, Lyons CW, Quinn J, Muallem S (2011) TRPML: transporters of metals in lysosomes essential for cell survival? Cell Calcium 50(3):288–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Koh JY, Choi DW (1994) Zinc toxicity on cultured cortical neurons: involvement of N-methyl-D-aspartate receptors. Neuroscience 60(4):1049–1057

    Article  CAS  PubMed  Google Scholar 

  37. Kovacs G, Danko T, Bergeron MJ, Balazs B, Suzuki Y, Zsembery A, Hediger MA (2011) Heavy metal cations permeate the TRPV6 epithelial cation channel. Cell Calcium 49(1):43–55

    Article  CAS  PubMed  Google Scholar 

  38. Kroncke KD (2007) Cellular stress and intracellular zinc dyshomeostasis. Arch Biochem Biophys 463(2):183–187

    Article  PubMed  Google Scholar 

  39. Lambert S, Drews A, Rizun O, Wagner TF, Lis A, Mannebach S, Plant S, Portz M, Meissner M, Philipp SE, Oberwinkler J (2011) Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J Biol Chem 286(14):12221–12233

    Article  CAS  PubMed  Google Scholar 

  40. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109(3):397–407

    Article  CAS  PubMed  Google Scholar 

  41. Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127(5):525–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130(5S Suppl):1500S–1508S

    CAS  PubMed  Google Scholar 

  43. Maret W, Li Y (2009) Coordination dynamics of zinc in proteins. Chem Rev 109(10):4682–4707

    Article  CAS  PubMed  Google Scholar 

  44. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20(1):3–18

    Article  CAS  PubMed  Google Scholar 

  45. Marin P, Israel M, Glowinski J, Premont J (2000) Routes of zinc entry in mouse cortical neurons: role in zinc-induced neurotoxicity. Eur J Neurosci 12(1):8–18

    Article  CAS  PubMed  Google Scholar 

  46. Mathie A, Sutton GL, Clarke CE, Veale EL (2006) Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol Ther 111(3):567–583

    Article  CAS  PubMed  Google Scholar 

  47. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121(1):49–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Mwanjewe J, Grover AK (2004) Role of transient receptor potential canonical 6 (TRPC6) in non-transferrin-bound iron uptake in neuronal phenotype PC12 cells. Biochem J 378(Pt 3):975–982

    Article  CAS  PubMed  Google Scholar 

  49. Nozaki C, Vergnano AM, Filliol D, Ouagazzal AM, Le Goff A, Carvalho S, Reiss D, Gaveriaux-Ruff C, Neyton J, Paoletti P, Kieffer BL (2011) Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit. Nat Neurosci 14(8):1017–1022

    Article  CAS  PubMed  Google Scholar 

  50. Nydegger I, Rumschik SM, Kay AR (2010) Zinc is externalized rather than released during synaptic transmission. ACS Chem Neurosci 1(11):728–736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE (2005) Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 280(23):22540–22548

    Google Scholar 

  52. Oberwinkler J, Phillipp SE (2007) Trpm3. Handb Exp Pharmacol (179):253–267

  53. Paoletti P, Vergnano AM, Barbour B, Casado M (2009) Zinc at glutamatergic synapses. Neuroscience 158(1):126–136

    Article  CAS  PubMed  Google Scholar 

  54. Patapoutian A, Tate S, Woolf CJ (2009) Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov 8(1):55–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Pelzer D, Pelzer S, McDonald TF (1990) Properties and regulation of calcium channels in muscle cells. Rev Physiol Biochem Pharmacol 114:107–207

    Article  CAS  PubMed  Google Scholar 

  56. Priel T, Hershfinkel M (2006) Zinc influx and physiological consequences in the beta-insulinoma cell line, Min6. Biochem Biophys Res Commun 346(1):205–212

    Article  CAS  PubMed  Google Scholar 

  57. Qian WJ, Aspinwall CA, Battiste MA, Kennedy RT (2000) Detection of secretion from single pancreatic beta-cells using extracellular fluorogenic reactions and confocal fluorescence microscopy. Anal Chem 72(4):711–717

    Article  CAS  PubMed  Google Scholar 

  58. Ragozzino D, Giovannelli A, Degasperi V, Eusebi F, Grassi F (2000) Zinc permeates mouse muscle ACh receptor channels expressed in BOSC 23 cells and affects channel function. J Physiol 529(Pt 1):83–91

    Article  CAS  PubMed  Google Scholar 

  59. Rungby J (2010) Zinc, zinc transporters and diabetes. Diabetologia 53(8):1549–1551

    Article  CAS  PubMed  Google Scholar 

  60. Sensi SL, Canzoniero LM, Yu SP, Ying HS, Koh JY, Kerchner GA, Choi DW (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci 17(24):9554–9564

    CAS  PubMed  Google Scholar 

  61. Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10(11):780–791

    Article  CAS  PubMed  Google Scholar 

  62. Sheline CT, Takata T, Ying H, Canzoniero LM, Yang A, Yu SP, Choi DW (2002) Potassium attenuates zinc-induced death of cultured cortical astrocytes. Glia 46(1):18–27

    Article  Google Scholar 

  63. Sheline CT, Ying HS, Ling CS, Canzoniero LM, Choi DW (2004) Depolarization-induced 65zinc influx into cultured cortical neurons. Neurobiol Dis 10(1):41–53

    Article  Google Scholar 

  64. Shuttleworth CW, Weiss JH (2011) Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol Sci 32(8):480–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Sun M, Goldin E, Stahl S, Falardeau JL, Kennedy JC, Acierno JS Jr, Bove C, Kaneski CR, Nagle J, Bromley MC, Colman M, Schiffmann R, Slaugenhaupt SA (2000) Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet 9(17):2471–2478

    Article  CAS  PubMed  Google Scholar 

  66. Topala CN, Groenestege WT, Thebault S, van den Berg D, Nilius B, Hoenderop JG, Bindels RJ (2007) Molecular determinants of permeation through the cation channel TRPM6. Cell Calcium 41(6):513–523

    Article  CAS  PubMed  Google Scholar 

  67. Tsien RW, Hess P, McCleskey EW, Rosenberg RL (1987) Calcium channels: mechanisms of selectivity, permeation, and block. Annu Rev Biophys Biophys Chem 16:265–290

    Article  CAS  PubMed  Google Scholar 

  68. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118

    CAS  PubMed  Google Scholar 

  69. Vega MT, Villalobos C, Garrido B, Gandia L, Bulbena O, Garcia-Sancho J, Garcia AG, Artalejo AR (1994) Permeation by zinc of bovine chromaffin cell calcium channels: relevance to secretion. Pflugers Arch 429(2):231–239

    Article  CAS  PubMed  Google Scholar 

  70. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  PubMed  Google Scholar 

  71. Wagner TF, Drews A, Loch S, Mohr F, Philipp SE, Lambert S, Oberwinkler J (2010) TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch 460:755–765

    Article  CAS  PubMed  Google Scholar 

  72. Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Dufer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10(12):1421–1430

    Article  CAS  PubMed  Google Scholar 

  73. Watt NT, Taylor DR, Kerrigan TL, Griffiths HH, Rushworth JV, Whitehouse IJ, Hooper NM (2012) Prion protein facilitates uptake of zinc into neuronal cells. Nat Commun 3:1134

    Article  PubMed Central  PubMed  Google Scholar 

  74. Weiss JH, Hartley DM, Koh JY, Choi DW (1993) AMPA receptor activation potentiates zinc neurotoxicity. Neuron 10(1):43–49

    Article  CAS  PubMed  Google Scholar 

  75. Weiss JH, Sensi SL, Koh JY (2000) Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21(10):395–401

    Article  CAS  PubMed  Google Scholar 

  76. Winegar BD, Lansman JB (1990) Voltage-dependent block by zinc of single calcium channels in mouse myotubes. J Physiol 425:563–578

    CAS  PubMed  Google Scholar 

  77. Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177(4):637–645

    Article  CAS  PubMed  Google Scholar 

  78. Yin HZ, Weiss JH (1995) Zn(2+) permeates Ca(2+) permeable AMPA/kainate channels and triggers selective neural injury. Neuroreport 6(18):2553–2556

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank J. Gibon for his helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Bouron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouron, A., Oberwinkler, J. Contribution of calcium-conducting channels to the transport of zinc ions. Pflugers Arch - Eur J Physiol 466, 381–387 (2014). https://doi.org/10.1007/s00424-013-1295-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1295-z

Keywords

Navigation