Skip to main content
Log in

Structure and dynamics of photoreceptor sensory cilia

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The rod and cone photoreceptor cells of the vertebrate retina have highly specialized structures that enable them to carry out their function of light detection over a broad range of illumination intensities with optimized spatial and temporal resolution. Most prominent are their unusually large sensory cilia, consisting of outer segments packed with photosensitive disc membranes, a connecting cilium with many features reminiscent of the primary cilium transition zone, and a pair of centrioles forming a basal body which serves as the platform upon which the ciliary axoneme is assembled. These structures form a highway through which an enormous flux of material moves on a daily basis to sustain the continual turnover of outer segment discs and the energetic demands of phototransduction. After decades of study, the details of the fine structure and distribution of molecular components of these structures are still incompletely understood, but recent advances in cellular imaging techniques and animal models of inherited ciliary defects are yielding important new insights. This knowledge informs our understanding both of the mechanisms of trafficking and assembly and of the pathophysiological mechanisms of human blinding ciliopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced from ref. [211]

Fig. 3

Reproduced from ref. 18

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IS:

Inner segment

OS:

Outer segment

ONL:

Outer nuclear layer

OPL:

Outer plexiform layer

CC:

Connecting cilium

BB:

Basal body

TZ:

Transition zone

PCM:

Pericentriolar material

DC:

Daughter centriole

MC:

Mother centriole

DAM:

Distal appendage material

CP:

Ciliary pocket

DAP:

Distal appendage

sDAP:

Subdistal appendage

PCV:

Primary ciliary vesicle

TF:

Transition fibers

IFT:

Intraflegellar transport

MT:

Microtubule

References

  1. Abd-El-Barr MM, Sykoudis K, Andrabi S, Eichers ER, Pennesi ME, Tan PL, Wilson JH, Katsanis N, Lupski JR, Wu SM (2007) Impaired photoreceptor protein transport and synaptic transmission in a mouse model of Bardet-Biedl syndrome. Vision Res 47:3394–3407. https://doi.org/10.1016/j.visres.2007.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lt A, Chen C, Koutalos Y (2014) Mitochondria contribute to NADPH generation in mouse rod photoreceptors. J Biol Chem 289:1519–1528. https://doi.org/10.1074/jbc.M113.511295

    Article  CAS  Google Scholar 

  3. Ames A 3rd, Walseth TF, Heyman RA, Barad M, Graeff RM, Goldberg ND (1986) Light-induced increases in cGMP metabolic flux correspond with electrical responses of photoreceptors. J Biol Chem 261:13034–13042

    Article  CAS  PubMed  Google Scholar 

  4. Anderson RG (1972) The three-dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol 54:246–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arikawa K, Molday LL, Molday RS, Williams DS (1992) Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration. J Cell Biol 116:659–667

    Article  CAS  PubMed  Google Scholar 

  6. Asano S, Engel BD, Baumeister W (2016) In situ cryo-electron tomography: a post-reductionist approach to structural biology. J Mol Biol 428:332–343. https://doi.org/10.1016/j.jmb.2015.09.030

    Article  CAS  PubMed  Google Scholar 

  7. Avasthi P, Watt CB, Williams DS, Le YZ, Li S, Chen CK, Marc RE, Frederick JM, Baehr W (2009) Trafficking of membrane proteins to cone but not rod outer segments is dependent on heterotrimeric kinesin-II. J Neurosci 29:14287–14298. https://doi.org/10.1523/JNEUROSCI.3976-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baehr W (2014) Membrane protein transport in photoreceptors: the function of PDEdelta: the Proctor lecture. Invest Ophthalmol Vis Sci 55:8653–8666. https://doi.org/10.1167/iovs.14-16066

    Article  PubMed  PubMed Central  Google Scholar 

  9. Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G (2019) Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 71:26–56. https://doi.org/10.1016/j.preteyeres.2018.12.004

    Article  PubMed  Google Scholar 

  10. Barber CF, Heuser T, Carbajal-Gonzalez BI, Botchkarev VV Jr, Nicastro D (2012) Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with dyneins in Chlamydomonas flagella. Mol Biol Cell 23:111–120. https://doi.org/10.1091/mbc.E11-08-0692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barnes CL, Malhotra H, Calvert PD (2021) Compartmentalization of photoreceptor sensory cilia. Front Cell Dev Biol 9:636737. https://doi.org/10.3389/fcell.2021.636737

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bell JM, Chen M, Durmaz T, Fluty AC, Ludtke SJ (2018) New software tools in EMAN2 inspired by EMDatabank map challenge. J Struct Biol 204:283–290. https://doi.org/10.1016/j.jsb.2018.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. https://doi.org/10.1126/science.1127344

    Article  PubMed  Google Scholar 

  14. Blasius TL, Takao D, Verhey KJ (2019) NPHP proteins are binding partners of nucleoporins at the base of the primary cilium. PLoS ONE 14:e0222924. https://doi.org/10.1371/journal.pone.0222924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14:25–34. https://doi.org/10.1016/s0955-0674(01)00290-3

    Article  CAS  PubMed  Google Scholar 

  16. Bowler M, Kong D, Sun S, Nanjundappa R, Evans L, Farmer V, Holland A, Mahjoub MR, Sui H, Loncarek J (2019) High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. Nat Commun 10:993. https://doi.org/10.1038/s41467-018-08216-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brown PK, Gibbons IR, Wald G (1963) The visual cells and visual pigment of the mudpuppy, necturus. J Cell Biol 19:79–106. https://doi.org/10.1083/jcb.19.1.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bui KH, Ishikawa T (2013) 3D structural analysis of flagella/cilia by cryo-electron tomography. Methods Enzymol 524:305–323. https://doi.org/10.1016/B978-0-12-397945-2.00017-2

    Article  CAS  PubMed  Google Scholar 

  19. Burgoyne T, Meschede IP, Burden JJ, Bailly M, Seabra MC, Futter CE (2015) Rod disc renewal occurs by evagination of the ciliary plasma membrane that makes cadherin-based contacts with the inner segment. Proc Natl Acad Sci U S A 112:15922–15927. https://doi.org/10.1073/pnas.1509285113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bykov YS, Schaffer M, Dodonova SO, Albert S, Plitzko JM, Baumeister W, Engel BD, Briggs JA (2017) The structure of the COPI coat determined within the cell. eLife 6:e32493. https://doi.org/10.7554/eLife.32493

  21. Calvert PD, Peet JA, Bragin A, Schiesser WE, Pugh EN Jr (2007) Fluorescence relaxation in 3D from diffraction-limited sources of PAGFP or sinks of EGFP created by multiphoton photoconversion. J Microsc 225:49–71. https://doi.org/10.1111/j.1365-2818.2007.01715.x

    Article  CAS  PubMed  Google Scholar 

  22. Calvert PD, Schiesser WE, Pugh EN Jr (2010) Diffusion of a soluble protein, photoactivatable GFP, through a sensory cilium. J Gen Physiol 135:173–196. https://doi.org/10.1085/jgp.200910322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carter-Dawson LD, LaVail MM (1979) Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J Comp Neurol 188:245–262. https://doi.org/10.1002/cne.901880204

    Article  CAS  PubMed  Google Scholar 

  24. Castano-Diez D, Zanetti G (2019) In situ structure determination by subtomogram averaging. Curr Opin Struct Biol 58:68–75. https://doi.org/10.1016/j.sbi.2019.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chadha A, Volland S, Baliaouri NV, Tran EM, Williams DS (2019) The route of the visual receptor rhodopsin along the cilium. J Cell Sci 132. https://doi.org/10.1242/jcs.229526

  26. Chaitin MH (1991) Actin filaments in the photoreceptor cilium of the rds mutant mouse. Exp Eye Res 53:107–113

    Article  CAS  PubMed  Google Scholar 

  27. Chaitin MH, Bok D (1986) Immunoferritin localization of actin in retinal photoreceptors. Invest Ophthalmol Vis Sci 27:1764–1767

    CAS  PubMed  Google Scholar 

  28. Chaitin MH, Burnside B (1989) Actin filament polarity at the site of rod outer segment disk morphogenesis. Invest Ophthalmol Vis Sci 30:2461–2469

    CAS  PubMed  Google Scholar 

  29. Chaitin MH, Schneider BG, Hall MO, Papermaster DS (1984) Actin in the photoreceptor connecting cilium: immunocytochemical localization to the site of outer segment disk formation. J Cell Biol 99:239–247

    Article  CAS  PubMed  Google Scholar 

  30. Chamling X, Seo S, Searby CC, Kim G, Slusarski DC, Sheffield VC (2014) The centriolar satellite protein AZI1 interacts with BBS4 and regulates ciliary trafficking of the BBSome. PLoS Genet 10:e1004083. https://doi.org/10.1371/journal.pgen.1004083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen F, Tillberg PW, Boyden ES (2015) Optical imaging. Expansion microscopy. Science 347:543–548. https://doi.org/10.1126/science.1260088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen M, Bell JM, Shi X, Sun SY, Wang Z, Ludtke SJ (2019) A complete data processing workflow for cryo-ET and subtomogram averaging. Nat Methods 16(11):1161–1168. https://doi.org/10.1038/s41592-019-0591-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chong WM, Wang WJ, Lo CH, Chiu TY, Chang TJ, Liu YP, Tanos B, Mazo G, Tsou MB, Jane WN, Yang TT, Liao JC (2020) Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages. Elife 9. https://doi.org/10.7554/eLife.53580

  34. Chou HT, Apelt L, Farrell DP, White SR, Woodsmith J, Svetlov V, Goldstein JS, Nager AR, Li Z, Muller J, Dollfus H, Nudler E, Stelzl U, DiMaio F, Nachury MV, Walz T (2019) The molecular architecture of native BBSome obtained by an integrated structural approach. Structure 27:1384-1394.e4. https://doi.org/10.1016/j.str.2019.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Civitci F, Shangguan J, Zheng T, Tao K, Rames M, Kenison J, Zhang Y, Wu L, Phelps C, Esener S, Nan X (2020) Fast and multiplexed superresolution imaging with DNA-PAINT-ERS. Nat Commun 11:4339. https://doi.org/10.1038/s41467-020-18181-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cohen AI (1960) The ultrastructure of the rods of the mouse retina. Am J Anat 107:23–48. https://doi.org/10.1002/aja.1001070103

    Article  CAS  PubMed  Google Scholar 

  37. Conkar D, Culfa E, Odabasi E, Rauniyar N, Yates JR 3rd, Firat-Karalar EN (2017) The centriolar satellite protein CCDC66 interacts with CEP290 and functions in cilium formation and trafficking. J Cell Sci 130:1450–1462. https://doi.org/10.1242/jcs.196832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Craige B, Tsao C-C, Diener DR, Hou Y, Lechtreck K-F, Rosenbaum JL, Witman GB (2010) CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 190:927–940. https://doi.org/10.1083/jcb.201006105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Devi R, Pelletier L, Prosser SL (2020) Charting the complex composite nature of centrosomes, primary cilia and centriolar satellites. Curr Opin Struct Biol 66:32–40. https://doi.org/10.1016/j.sbi.2020.10.006

    Article  CAS  PubMed  Google Scholar 

  40. Dharmat R, Eblimit A, Robichaux MA, Zhang Z, Nguyen TT, Jung SY, He F, Jain A, Li Y, Qin J, Overbeek P, Roepman R, Mardon G, Wensel TG, Chen R (2018) SPATA7 maintains a novel photoreceptor-specific zone in the distal connecting cilium. J Cell Biol 217:2851–2865. https://doi.org/10.1083/jcb.201712117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ding JD, Salinas RY, Arshavsky VY (2015) Discs of mammalian rod photoreceptors form through the membrane evagination mechanism. J Cell Biol 211:495–502. https://doi.org/10.1083/jcb.201508093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Downing KH, Sui H (2007) Structural insights into microtubule doublet interactions in axonemes. Curr Opin Struct Biol 17:253–259

    Article  CAS  PubMed  Google Scholar 

  43. Evans RJ, Schwarz N, Nagel-Wolfrum K, Wolfrum U, Hardcastle AJ, Cheetham ME (2010) The retinitis pigmentosa protein RP2 links pericentriolar vesicle transport between the Golgi and the primary cilium. Hum Mol Genet 19:1358–1367. https://doi.org/10.1093/hmg/ddq012

    Article  CAS  PubMed  Google Scholar 

  44. Falk N, Joachimsthaler A, Kessler K, Lux UT, Noegel AA, Kremers J, Brandstatter JH, Giessl A, Falk N, Joachimsthaler A, Kessler K, Lux UT, Noegel AA, Kremers J, Brandstatter JH, Giessl A (2019) Lack of a retinal phenotype in a Syne-2/Nesprin-2 knockout mouse model. Cells 8. https://doi.org/10.3390/cells8101238

  45. Fansa EK, Wittinghofer A (2016) Sorting of lipidated cargo by the Arl2/Arl3 system. Small GTPases 7:222–230. https://doi.org/10.1080/21541248.2016.1224454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fariss RN, Molday RS, Fisher SK, Matsumoto B (1997) Evidence from normal and degenerating photoreceptors that two outer segment integral membrane proteins have separate transport pathways. J Comp Neurol 387:148–156

    Article  CAS  PubMed  Google Scholar 

  47. Fernandez JJ, Li S, Agard DA (2019) Consideration of sample motion in cryo-tomography based on alignment residual interpolation. J Struct Biol 205:1–6. https://doi.org/10.1016/j.jsb.2019.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fernandez JJ, Li S, Bharat TAM, Agard DA (2018) Cryo-tomography tilt-series alignment with consideration of the beam-induced sample motion. J Struct Biol 202:200–209. https://doi.org/10.1016/j.jsb.2018.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  49. Frederick JM, Hanke-Gogokhia C, Ying G, Baehr W (2020) Diffuse or hitch a ride: how photoreceptor lipidated proteins get from here to there. Biol Chem 401:573–584. https://doi.org/10.1515/hsz-2019-0375

    Article  CAS  PubMed  Google Scholar 

  50. Galaz-Montoya JG, Ludtke SJ (2017) The advent of structural biology in situ by single particle cryo-electron tomography. Biophys Rep 3:17–35. https://doi.org/10.1007/s41048-017-0040-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gambarotto D, Zwettler FU, Le Guennec M, Schmidt-Cernohorska M, Fortun D, Borgers S, Heine J, Schloetel JG, Reuss M, Unser M, Boyden ES, Sauer M, Hamel V, Guichard P (2019) Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat Methods 16:71–74. https://doi.org/10.1038/s41592-018-0238-1

    Article  CAS  PubMed  Google Scholar 

  52. Gao M, Maraspini R, Beutel O, Zehtabian A, Eickholt B, Honigmann A, Ewers H (2018) Expansion stimulated emission depletion microscopy (ExSTED). ACS Nano 12:4178–4185. https://doi.org/10.1021/acsnano.8b00776

    Article  CAS  PubMed  Google Scholar 

  53. Garcia G 3rd, Raleigh DR, Reiter JF (2018) How the ciliary membrane is organized inside-out to communicate outside-in. Curr Biol 28:R421–R434. https://doi.org/10.1016/j.cub.2018.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gheiratmand L, Coyaud E, Gupta GD, Laurent EM, Hasegan M, Prosser SL, Goncalves J, Raught B, Pelletier L (2019) Spatial and proteomic profiling reveals centrosome-independent features of centriolar satellites. EMBO J 38:e101109. https://doi.org/10.15252/embj.2018101109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ghossoub R, Molla-Herman A, Bastin P, Benmerah A (2011) The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol Cell 103:131–144. https://doi.org/10.1042/BC20100128

    Article  PubMed  Google Scholar 

  56. Gibbons IR (1961) The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J Biophys Biochem Cytol 11:179–205. https://doi.org/10.1083/jcb.11.1.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gilliam JC, Chang JT, Sandoval IM, Zhang Y, Li T, Pittler SJ, Chiu W, Wensel TG (2012) Three-dimensional architecture of the rod sensory cilium and its disruption in retinal neurodegeneration. Cell 151:1029–1041. https://doi.org/10.1016/j.cell.2012.10.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gilula NB, Satir P (1972) The ciliary necklace. A ciliary membrane specialization. J Cell Biol 53:494–509. https://doi.org/10.1083/jcb.53.2.494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gogendeau D, Lemullois M, Le Borgne P, Castelli M, Aubusson-Fleury A, Arnaiz O, Cohen J, Vesque C, Schneider-Maunoury S, Bouhouche K, Koll F, Tassin AM (2020) MKS-NPHP module proteins control ciliary shedding at the transition zone. PLoS Biol 18:e3000640. https://doi.org/10.1371/journal.pbio.3000640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gomez-Garcia PA, Garbacik ET, Otterstrom JJ, Garcia-Parajo MF, Lakadamyali M (2018) Excitation-multiplexed multicolor superresolution imaging with fm-STORM and fm-DNA-PAINT. Proc Natl Acad Sci U S A 115:12991–12996. https://doi.org/10.1073/pnas.1804725115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Greenan GA, Keszthelyi B, Vale RD, Agard DA (2018) Insights into centriole geometry revealed by cryotomography of doublet and triplet centrioles. eLife 7:e36851. https://doi.org/10.7554/eLife.36851

  62. Greenan GA, Vale RD, Agard DA (2020) Electron cryotomography of intact motile cilia defines the basal body to axoneme transition. J Cell Biol 219(1):e201907060. https://doi.org/10.1083/jcb.201907060

  63. Greiner JV, Weidman TA, Bodley HD, Greiner CA (1981) Ciliogenesis in photoreceptor cells of the retina. Exp Eye Res 33:433–446

    Article  CAS  PubMed  Google Scholar 

  64. Gross OP, Pugh EN Jr, Burns ME (2012) Spatiotemporal cGMP dynamics in living mouse rods. Biophys J 102:1775–1784. https://doi.org/10.1016/j.bpj.2012.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gustafsson MG, Shao L, Carlton PM, Wang CJ, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970. https://doi.org/10.1529/biophysj.107.120345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hanke-Gogokhia C, Zhang H, Frederick JM, Baehr W (2016) The function of arf-like proteins ARL2 and ARL3 in photoreceptors. Adv Exp Med Biol 854:655–661. https://doi.org/10.1007/978-3-319-17121-0_87

    Article  CAS  PubMed  Google Scholar 

  67. Hendrickson A, Bumsted-O’Brien K, Natoli R, Ramamurthy V, Possin D, Provis J (2008) Rod photoreceptor differentiation in fetal and infant human retina. Exp Eye Res 87:415–426. https://doi.org/10.1016/j.exer.2008.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Heuser T, Barber CF, Lin J, Krell J, Rebesco M, Porter ME, Nicastro D (2012) Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein. Proc Natl Acad Sci U S A 109:E2067-2076. https://doi.org/10.1073/pnas.1120690109

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hori A, Toda T (2017) Regulation of centriolar satellite integrity and its physiology. Cell Mol Life Sci 74:213–229. https://doi.org/10.1007/s00018-016-2315-x

    Article  CAS  PubMed  Google Scholar 

  70. Horst CJ, Forestner DM, Besharse JC (1987) Cytoskeletal-membrane interactions: a stable interaction between cell surface glycoconjugates and doublet microtubules of the photoreceptor connecting cilium. J Cell Biol 105:2973–2987

    Article  CAS  PubMed  Google Scholar 

  71. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–1058. https://doi.org/10.1016/j.cell.2010.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang XF, Xiang L, Fang XL, Liu WQ, Zhuang YY, Chen ZJ, Shen RJ, Cheng W, Han RY, Zheng SS, Chen XJ, Liu X, Jin ZB (2019) Functional characterization of CEP250 variant identified in nonsyndromic retinitis pigmentosa. Hum Mutat 40:1039–1045. https://doi.org/10.1002/humu.23759

    Article  CAS  PubMed  Google Scholar 

  73. Humbert MC, Weihbrecht K, Searby CC, Li Y, Pope RM, Sheffield VC, Seo S (2012) ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc Natl Acad Sci U S A 109:19691–19696. https://doi.org/10.1073/pnas.1210916109

    Article  PubMed  PubMed Central  Google Scholar 

  74. Iannaccone A, Man D, Waseem N, Jennings BJ, Ganapathiraju M, Gallaher K, Reese E, Bhattacharya SS, Klein-Seetharaman J (2006) Retinitis pigmentosa associated with rhodopsin mutations: Correlation between phenotypic variability and molecular effects. Vision Res 46:4556–4567. https://doi.org/10.1016/j.visres.2006.08.018

    Article  CAS  PubMed  Google Scholar 

  75. Ikeda K, Ikeda T, Morikawa K, Kamiya R (2007) Axonemal localization of Chlamydomonas PACRG, a homologue of the human Parkin-coregulated gene product. Cell Motil Cytoskeleton 64:814–821. https://doi.org/10.1002/cm.20225

    Article  CAS  PubMed  Google Scholar 

  76. Imanishi Y (2019) Protein sorting in healthy and diseased photoreceptors. Annu Rev Vis Sci. https://doi.org/10.1146/annurev-vision-091718-014843

    Article  PubMed  Google Scholar 

  77. Imanishi Y, Palczewski K (2010) Visualization of retinoid storage and trafficking by two-photon microscopy. Methods Mol Biol 652:247–261. https://doi.org/10.1007/978-1-60327-325-1_14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Insinna C, Besharse JC (2008) Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev Dyn 237:1982–1992. https://doi.org/10.1002/dvdy.21554

    Article  PubMed  PubMed Central  Google Scholar 

  79. Insinna C, Pathak N, Perkins B, Drummond I, Besharse JC (2008) The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development. Dev Biol 316:160–170. https://doi.org/10.1016/j.ydbio.2008.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ishikawa H, Kubo A, Tsukita S, Tsukita S (2005) Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat Cell Biol 7:517–524. https://doi.org/10.1038/ncb1251

    Article  CAS  PubMed  Google Scholar 

  81. Jana SC, Mendonca S, Machado P, Werner S, Rocha J, Pereira A, Maiato H, Bettencourt-Dias M (2018) Differential regulation of transition zone and centriole proteins contributes to ciliary base diversity. Nat Cell Biol 20:928–941. https://doi.org/10.1038/s41556-018-0132-1

    Article  CAS  PubMed  Google Scholar 

  82. Jaulin F, Kreitzer G (2010) KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at MT plus ends with EB1 and APC. J Cell Biol 190:443–460. https://doi.org/10.1083/jcb.201006044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jiang L, Wei Y, Ronquillo CC, Marc RE, Yoder BK, Frederick JM, Baehr W (2015) Heterotrimeric kinesin-2 (KIF3) mediates transition zone and axoneme formation of mouse photoreceptors. J Biol Chem 290:12765–12778. https://doi.org/10.1074/jbc.M115.638437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Johnson CA, Malicki JJ (2019) The nuclear arsenal of cilia. Dev Cell 49:161–170. https://doi.org/10.1016/j.devcel.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  85. Jordan MA, Diener DR, Stepanek L, Pigino G (2018) The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat Cell Biol 20:1250–1255. https://doi.org/10.1038/s41556-018-0213-1

    Article  CAS  PubMed  Google Scholar 

  86. Jordan MA, Pigino G (2019) In situ cryo-electron tomography and subtomogram averaging of intraflagellar transport trains. Methods Cell Biol 152:179–195. https://doi.org/10.1016/bs.mcb.2019.04.005

    Article  PubMed  Google Scholar 

  87. Katoh Y, Chiba S, Nakayama K (2020) Practical method for superresolution imaging of primary cilia and centrioles by expansion microscopy using an amplibody for fluorescence signal amplification. Mol Biol Cell 31:2195–2206. https://doi.org/10.1091/mbc.E20-04-0250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Katoh Y, Nozaki S, Hartanto D, Miyano R, Nakayama K (2015) Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins. J Cell Sci 128:2351–2362. https://doi.org/10.1242/jcs.168740

    Article  CAS  PubMed  Google Scholar 

  89. Kee HL, Dishinger JF, Blasius TL, Liu CJ, Margolis B, Verhey KJ (2012) A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat Cell Biol 14:431–437. https://doi.org/10.1038/ncb2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Khanna H (2018) More than meets the eye: current understanding of RPGR function. Adv Exp Med Biol 1074:521–538. https://doi.org/10.1007/978-3-319-75402-4_64

    Article  CAS  PubMed  Google Scholar 

  91. Kim J, Krishnaswami SR, Gleeson JG (2008) CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum Mol Genet 17:3796–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim JC, Badano JL, Sibold S, Esmail MA, Hill J, Hoskins BE, Leitch CC, Venner K, Ansley SJ, Ross AJ, Leroux MR, Katsanis N, Beales PL (2004) The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet 36:462–470. https://doi.org/10.1038/ng1352

    Article  CAS  PubMed  Google Scholar 

  93. Klinger M, Wang W, Kuhns S, Barenz F, Drager-Meurer S, Pereira G, Gruss OJ (2014) The novel centriolar satellite protein SSX2IP targets Cep290 to the ciliary transition zone. Mol Biol Cell 25:495–507. https://doi.org/10.1091/mbc.E13-09-0526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Knabe W, Kuhn H (1997) Ciliogenesis in photoreceptor cells of the tree shrew retina. Anat Embryol (Berl) 196:123–131

    Article  CAS  Google Scholar 

  95. Kong D, Sahabandu N, Sullenberger C, Vásquez-Limeta A, Luvsanjav D, Lukasik K, Loncarek J (2020) Prolonged mitosis results in structurally aberrant and over-elongated centrioles. J Cell Biol 219. https://doi.org/10.1083/jcb.201910019

  96. Koyfman AY, Schmid MF, Gheiratmand L, Fu CJ, Khant HA, Huang D, He CY, Chiu W (2011) Structure of Trypanosoma brucei flagellum accounts for its bihelical motion. Proc Natl Acad Sci U S A 108:11105–11108. https://doi.org/10.1073/pnas.1103634108

    Article  PubMed  PubMed Central  Google Scholar 

  97. Krock BL, Mills-Henry I, Perkins BD (2009) Retrograde intraflagellar transport by cytoplasmic dynein-2 is required for outer segment extension in vertebrate photoreceptors but not arrestin translocation. Invest Ophthalmol Vis Sci 50:5463–5471. https://doi.org/10.1167/iovs.09-3828

    Article  PubMed  Google Scholar 

  98. Kubo A, Sasaki H, Yuba-Kubo A, Tsukita S, Shiina N (1999) Centriolar satellites: molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis. J Cell Biol 147:969–980. https://doi.org/10.1083/jcb.147.5.969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kurner J, Medalia O, Linaroudis AA, Baumeister W (2004) New insights into the structural organization of eukaryotic and prokaryotic cytoskeletons using cryo-electron tomography. Exp Cell Res 301:38–42

    Article  PubMed  CAS  Google Scholar 

  100. Lakadamyali M, Babcock H, Bates M, Zhuang X, Lichtman J (2012) 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS ONE 7:e30826. https://doi.org/10.1371/journal.pone.0030826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. LaVail MM (1973) Kinetics of rod outer segment renewal in the developing mouse retina. J Cell Biol 58:650–661. https://doi.org/10.1083/jcb.58.3.650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Le Guennec M, Klena N, Gambarotto D, Laporte MH, Tassin AM, van den Hoek H, Erdmann PS, Schaffer M, Kovacik L, Borgers S, Goldie KN, Stahlberg H, Bornens M, Azimzadeh J, Engel BD, Hamel V, Guichard P (2020) A helical inner scaffold provides a structural basis for centriole cohesion. Sci Adv 6:eaaz4137. https://doi.org/10.1126/sciadv.aaz4137

  103. Leigh KE, Navarro PP, Scaramuzza S, Chen W, Zhang Y, Castano-Diez D, Kudryashev M (2019) Subtomogram averaging from cryo-electron tomograms. Methods Cell Biol 152:217–259. https://doi.org/10.1016/bs.mcb.2019.04.003

    Article  PubMed  Google Scholar 

  104. Lewis TR, Zareba M, Link BA, Besharse JC (2018) Cone myoid elongation involves unidirectional microtubule movement mediated by dynein-1. Mol Biol Cell 29:180–190. https://doi.org/10.1091/mbc.E17-08-0525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li S, Fernandez JJ, Marshall WF, Agard DA (2012) Three-dimensional structure of basal body triplet revealed by electron cryo-tomography. Embo J 31:552–562. https://doi.org/10.1038/emboj.2011.460

    Article  CAS  PubMed  Google Scholar 

  106. Linck R, Fu X, Lin J, Ouch C, Schefter A, Steffen W, Warren P, Nicastro D (2014) Insights into the structure and function of ciliary and flagellar doublet microtubules: tektins, Ca2+-binding proteins, and stable protofilaments. J Biol Chem 289:17427–17444. https://doi.org/10.1074/jbc.M114.568949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lodowski KH, Imanishi Y (2015) Monitoring of rhodopsin trafficking and mistrafficking in live photoreceptors. Methods Mol Biol 1271:293–307. https://doi.org/10.1007/978-1-4939-2330-4_19

    Article  CAS  PubMed  Google Scholar 

  108. Ludlam WG, Aoba T, Cuellar J, Bueno-Carrasco MT, Makaju A, Moody JD, Franklin S, Valpuesta JM, Willardson BM (2019) Molecular architecture of the Bardet-Biedl syndrome protein 2–7-9 subcomplex. J Biol Chem 294:16385–16399. https://doi.org/10.1074/jbc.RA119.010150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lyubarsky AL, Daniele LL, Pugh EN Jr (2004) From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse ERG. Vision Res 44:3235–3251

    Article  CAS  PubMed  Google Scholar 

  110. Maerker T, van Wijk E, Overlack N, Kersten FF, McGee J, Goldmann T, Sehn E, Roepman R, Walsh EJ, Kremer H, Wolfrum U (2008) A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells. Hum Mol Genet 17:71–86. https://doi.org/10.1093/hmg/ddm285

    Article  CAS  PubMed  Google Scholar 

  111. Mahecic D, Gambarotto D, Douglass KM, Fortun D, Banterle N, Ibrahim KA, Le Guennec M, Gönczy P, Hamel V, Guichard P, Manley S (2020) Homogeneous multifocal excitation for high-throughput super-resolution imaging. Nat Methods 17:726–733. https://doi.org/10.1038/s41592-020-0859-z

    Article  CAS  PubMed  Google Scholar 

  112. Malinski JA, Wensel TG (1992) Membrane stimulation of cGMP phosphodiesterase activation by transducin: comparison of phospholipid bilayers to rod outer segment membranes. Biochemistry 31:9502–9512

    Article  CAS  PubMed  Google Scholar 

  113. May-Simera H, Nagel-Wolfrum K, Wolfrum U (2017) Cilia - the sensory antennae in the eye. Prog Retin Eye Res 60:144–180. https://doi.org/10.1016/j.preteyeres.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  114. McEwen BF, Frank J (2001) Electron tomographic and other approaches for imaging molecular machines. Curr Opin Neurobiol 11:594–600

    Article  CAS  PubMed  Google Scholar 

  115. McIntosh R, Nicastro D, Mastronarde D (2005) New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol 15:43–51. https://doi.org/10.1016/j.tcb.2004.11.009

    Article  CAS  PubMed  Google Scholar 

  116. Megaw R, Mellough C, Wright A, Lako M, Ffrench-Constant C (2015) Use of induced pluripotent stem-cell technology to understand photoreceptor cytoskeletal dynamics in retinitis pigmentosa. Lancet 385(Suppl 1):S69. https://doi.org/10.1016/S0140-6736(15)60384-1

    Article  PubMed  Google Scholar 

  117. Mohan S, Timbers TA, Kennedy J, Blacque OE, Leroux MR (2013) Striated rootlet and nonfilamentous forms of rootletin maintain ciliary function. Curr Biol 23:2016–2022. https://doi.org/10.1016/j.cub.2013.08.033

    Article  CAS  PubMed  Google Scholar 

  118. Molday RS, Hicks D, Molday L (1987) Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28:50–61

    CAS  PubMed  Google Scholar 

  119. Molla-Herman A, Ghossoub R, Blisnick T, Meunier A, Serres C, Silbermann F, Emmerson C, Romeo K, Bourdoncle P, Schmitt A, Saunier S, Spassky N, Bastin P, Benmerah A (2010) The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci 123:1785–1795. https://doi.org/10.1242/jcs.059519

    Article  CAS  PubMed  Google Scholar 

  120. Moritz M, Braunfeld MB, Sedat JW, Alberts B, Agard DA (1995) Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature 378:638–640. https://doi.org/10.1038/378638a0

    Article  CAS  PubMed  Google Scholar 

  121. Moritz OL, Molday RS (1996) Molecular cloning, membrane topology, and localization of bovine rom-1 in rod and cone photoreceptor cells. Invest Ophthalmol Vis Sci 37:352–362

    CAS  PubMed  Google Scholar 

  122. Moye AR, Singh R, Kimler VA, Dilan TL, Munezero D, Saravanan T, Goldberg AFX, Ramamurthy V (2018) ARL2BP, a protein linked to Retinitis Pigmentosa, is needed for normal photoreceptor cilia doublets and outer segment structure. Mol Biol Cell 29:1590-1598. https://doi.org/10.1091/mbc.E18-01-0040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Muhlhans J, Brandstatter JH, Giessl A (2011) The centrosomal protein pericentrin identified at the basal body complex of the connecting cilium in mouse photoreceptors. PLoS ONE 6:e26496. https://doi.org/10.1371/journal.pone.0026496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Muresan V, Besharse JC (1994) Complex intermolecular interactions maintain a stable linkage between the photoreceptor connecting cilium axoneme and plasma membrane. Cell Motil Cytoskeleton 28:213–230. https://doi.org/10.1002/cm.970280305

    Article  CAS  PubMed  Google Scholar 

  125. Muresan V, Joshi HC, Besharse JC (1993) Gamma-tubulin in differentiated cell types: localization in the vicinity of basal bodies in retinal photoreceptors and ciliated epithelia. J Cell Sci 104(Pt 4):1229–1237

    Article  CAS  PubMed  Google Scholar 

  126. Murga-Zamalloa CA, Desai NJ, Hildebrandt F, Khanna H (2010) Interaction of ciliary disease protein retinitis pigmentosa GTPase regulator with nephronophthisis-associated proteins in mammalian retinas. Mol Vis 16:1373–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Murga-Zamalloa CA, Swaroop A, Khanna H (2009) RPGR-containing protein complexes in syndromic and non-syndromic retinal degeneration due to ciliary dysfunction. J Genet 88:399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mustafi D, Engel AH, Palczewski K (2009) Structure of cone photoreceptors. Prog Retin Eye Res 28:289–302. https://doi.org/10.1016/j.preteyeres.2009.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nachury M, Seeley E, Jin H (2010) Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu Rev Cell Dev Bio 26:59–87. https://doi.org/10.1146/annurev.cellbio.042308.113337

    Article  CAS  Google Scholar 

  130. Nachury MV (2018) The molecular machines that traffic signaling receptors into and out of cilia. Curr Opin Cell Biol 51:124–131. https://doi.org/10.1016/j.ceb.2018.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201–1213

    Article  CAS  PubMed  Google Scholar 

  132. Najafi M, Calvert PD (2015) Measurements of rhodopsin diffusion within signaling membrane microcompartments in live photoreceptors. Methods Mol Biol 1271:309–323. https://doi.org/10.1007/978-1-4939-2330-4_20

    Article  CAS  PubMed  Google Scholar 

  133. Nakayama K, Katoh Y (2018) Ciliary protein trafficking mediated by IFT and BBSome complexes with the aid of kinesin-2 and dynein-2 motors. J Biochem 163:155–164. https://doi.org/10.1093/jb/mvx087

    Article  CAS  PubMed  Google Scholar 

  134. Nicastro D (2009) Cryo-electron microscope tomography to study axonemal organization. Methods Cell Biol 91:1–39. https://doi.org/10.1016/S0091-679X(08)91001-3

    Article  CAS  PubMed  Google Scholar 

  135. Nicastro D, Fu X, Heuser T, Tso A, Porter ME, Linck RW (2011) Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proc Natl Acad Sci USA 108:E845–E853. https://doi.org/10.1073/pnas.1106178108

    Article  PubMed  PubMed Central  Google Scholar 

  136. Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, McIntosh JR (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944–948. https://doi.org/10.1126/science.1128618

    Article  CAS  PubMed  Google Scholar 

  137. Nickell S, Park PS, Baumeister W, Palczewski K (2007) Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography. J Cell Biol 177:917–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Oda T, Abe T, Yanagisawa H, Kikkawa M (2016) Docking-complex-independent alignment of Chlamydomonas outer dynein arms with 24-nm periodicity in vitro. J Cell Sci 129:1547–1551. https://doi.org/10.1242/jcs.184598

    Article  CAS  PubMed  Google Scholar 

  139. Odabasi E, Gul S, Kavakli IH, Firat-Karalar EN (2019) Centriolar satellites are required for efficient ciliogenesis and ciliary content regulation. EMBO Rep 20:e47723. https://doi.org/10.15252/embr.201947723

  140. Oikonomou CM, Jensen GJ (2017) Cellular electron cryotomography: toward structural biology in situ. Annu Rev Biochem 86:873–896. https://doi.org/10.1146/annurev-biochem-061516-044741

    Article  CAS  PubMed  Google Scholar 

  141. Otsu W, Hsu YC, Chuang JZ, Sung CH (2019) The late endosomal pathway regulates the ciliary targeting of tetraspanin protein peripherin 2. J Neurosci 39:3376–3393. https://doi.org/10.1523/JNEUROSCI.2811-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ou YY, Zhang M, Chi S, Matyas JR, Rattner JB (2003) Higher order structure of the PCM adjacent to the centriole. Cell Motil Cytoskeleton 55:125–133. https://doi.org/10.1002/cm.10115

    Article  PubMed  Google Scholar 

  143. Owa M, Uchihashi T, Yanagisawa HA, Yamano T, Iguchi H, Fukuzawa H, Wakabayashi KI, Ando T, Kikkawa M (2019) Inner lumen proteins stabilize doublet microtubules in cilia and flagella. Nat Commun 10:1143. https://doi.org/10.1038/s41467-019-09051-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Papermaster DS, Schneider BG, DeFoe D, Besharse JC (1986) Biosynthesis and vectorial transport of opsin on vesicles in retinal rod photoreceptors. J Histochem Cytochem 34:5–16

    Article  CAS  PubMed  Google Scholar 

  145. Pazour GJ, Baker SA, Deane JA, Cole DG, Dickert BL, Rosenbaum JL, Witman GB, Besharse JC (2002) The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol 157:103–113. https://doi.org/10.1083/jcb.200107108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pazour GJ, Rosenbaum JL (2002) Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol 12:551–555

    Article  CAS  PubMed  Google Scholar 

  147. Pearring JN, Salinas RY, Baker SA, Arshavsky VY (2013) Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 36:24–51. https://doi.org/10.1016/j.preteyeres.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  148. Pedersen LB, Rosenbaum JL (2008) Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol 85:23–61

    Article  CAS  PubMed  Google Scholar 

  149. Peters KR, Palade GE, Schneider BG, Papermaster DS (1983) Fine structure of a periciliary ridge complex of frog retinal rod cells revealed by ultrahigh resolution scanning electron microscopy. J Cell Biol 96:265–276

    Article  CAS  PubMed  Google Scholar 

  150. Pigino G, Maheshwari A, Bui KH, Shingyoji C, Kamimura S, Ishikawa T (2012) Comparative structural analysis of eukaryotic flagella and cilia from Chlamydomonas, Tetrahymena, and sea urchins. J Struct Biol 178:199–206. https://doi.org/10.1016/j.jsb.2012.02.012

    Article  PubMed  Google Scholar 

  151. Prasai A, Schmidt Cernohorska M, Ruppova K, Niederlova V, Andelova M, Draber P, Stepanek O, Huranova M (2020) The BBSome assembly is spatially controlled by BBS1 and BBS4 in human cells. J Biol Chem 295:14279–14290. https://doi.org/10.1074/jbc.RA120.013905

    Article  CAS  PubMed  Google Scholar 

  152. Punge A, Rizzoli SO, Jahn R, Wildanger JD, Meyer L, Schonle A, Kastrup L, Hell SW (2008) 3D reconstruction of high-resolution STED microscope images. Microsc Res Tech 71:644–650. https://doi.org/10.1002/jemt.20602

    Article  PubMed  Google Scholar 

  153. Rattner A, Smallwood PM, Williams J, Cooke C, Savchenko A, Lyubarsky A, Pugh EN, Nathans J (2001) A photoreceptor-specific cadherin is essential for the structural integrity of the outer segment and for photoreceptor survival. Neuron 32:775–786

    Article  CAS  PubMed  Google Scholar 

  154. Reese TS (1965) Olfactory Cilia in the Frog. J Cell Biol 25:209–230. https://doi.org/10.1083/jcb.25.2.209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ringo DL (1967) Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol 33:543–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Robichaux MA, Potter VL, Zhang Z, He F, Liu J, Schmid MF, Wensel TG (2019) Defining the layers of a sensory cilium with STORM and cryoelectron nanoscopy. Proc Natl Acad Sci U S A 116:23562–23572. https://doi.org/10.1073/pnas.1902003116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rohlich P (1975) The sensory cilium of retinal rods is analogous to the transitional zone of motile cilia. Cell Tissue Res 161:421–430

    Article  CAS  PubMed  Google Scholar 

  158. Roof DJ, Heuser JE (1982) Surfaces of rod photoreceptor disk membranes: integral membrane components. J Cell Biol 95:487–500

    Article  CAS  PubMed  Google Scholar 

  159. Roof DJ, Korenbrot JI, Heuser JE (1982) Surfaces of rod photoreceptor disk membranes: light-activated enzymes. J Cell Biol 95:501–509

    Article  CAS  PubMed  Google Scholar 

  160. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825

    Article  CAS  PubMed  Google Scholar 

  161. Sahabandu N, Kong D, Magidson V, Nanjundappa R, Sullenberger C, Mahjoub MR, Loncarek J (2019) Expansion microscopy for the analysis of centrioles and cilia. J Microsc 276:145–159. https://doi.org/10.1111/jmi.12841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Saka SK, Wang Y, Kishi JY, Zhu A, Zeng Y, Xie W, Kirli K, Yapp C, Cicconet M, Beliveau BJ, Lapan SW, Yin S, Lin M, Boyden ES, Kaeser PS, Pihan G, Church GM, Yin P (2019) Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat Biotechnol 37:1080–1090. https://doi.org/10.1038/s41587-019-0207-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Salisbury JL (1995) Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol 7:39–45. https://doi.org/10.1016/0955-0674(95)80043-3

    Article  CAS  PubMed  Google Scholar 

  164. Sanchez RM, Zhang Y, Chen W, Dietrich L, Kudryashev M (2020) Subnanometer-resolution structure determination in situ by hybrid subtomogram averaging - single particle cryo-EM. Nat Commun 11:3709. https://doi.org/10.1038/s41467-020-17466-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Schaffer M, Pfeffer S, Mahamid J, Kleindiek S, Laugks T, Albert S, Engel BD, Rummel A, Smith AJ, Baumeister W, Plitzko JM (2019) A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nat Methods 16:757–762. https://doi.org/10.1038/s41592-019-0497-5

    Article  CAS  PubMed  Google Scholar 

  166. Scholey JM (2008) Intraflagellar transport motors in cilia: moving along the cell’s antenna. J Cell Biol 180:23–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Schur FK (2019) Toward high-resolution in situ structural biology with cryo-electron tomography and subtomogram averaging. Curr Opin Struct Biol 58:1–9. https://doi.org/10.1016/j.sbi.2019.03.018

    Article  CAS  PubMed  Google Scholar 

  168. Sedmak T, Wolfrum U (2010) Intraflagellar transport molecules in ciliary and nonciliary cells of the retina. J Cell Biol 189:171–186. https://doi.org/10.1083/jcb.200911095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sedmak T, Wolfrum U (2011) Intraflagellar transport proteins in ciliogenesis of photoreceptor cells. Biol Cell 103:449–466. https://doi.org/10.1042/BC20110034

    Article  CAS  PubMed  Google Scholar 

  170. Seo S, Datta P (2017) Photoreceptor outer segment as a sink for membrane proteins: hypothesis and implications in retinal ciliopathies. Hum Mol Genet 26:R75–R82. https://doi.org/10.1093/hmg/ddx163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Shi X, Chen M, Yu Z, Bell JM, Wang H, Forrester I, Villarreal H, Jakana J, Du D, Luisi BF, Ludtke SJ, Wang Z (2019) In situ structure and assembly of the multidrug efflux pump AcrAB-TolC. Nat Commun 10:2635. https://doi.org/10.1038/s41467-019-10512-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Shiba D, Yokoyama T (2012) The ciliary transitional zone and nephrocystins. Differentiation 83:S91-96. https://doi.org/10.1016/j.diff.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  173. Singh SK, Gui M, Koh F, Yip MC, Brown A (2020) Structure and activation mechanism of the BBSome membrane protein trafficking complex. eLife 9:e53322. https://doi.org/10.7554/eLife.53322

  174. Sjostrand FS (1953) The ultrastructure of the innersegments of the retinal rods of the guinea pig eye as revealed by electron microscopy. J Cell Physiol 42:45–70

    Article  CAS  Google Scholar 

  175. Smith TS, Spitzbarth B, Li J, Dugger DR, Stern-Schneider G, Sehn E, Bolch SN, McDowell JH, Tipton J, Wolfrum U, Smith WC (2013) Light-dependent phosphorylation of Bardet-Biedl syndrome 5 in photoreceptor cells modulates its interaction with arrestin1. Cell Mol Life Sci 70:4603–4616. https://doi.org/10.1007/s00018-013-1403-4

    Article  CAS  PubMed  Google Scholar 

  176. Snow JJ, Ou G, Gunnarson AL, Walker MR, Zhou HM, Brust-Mascher I, Scholey JM (2004) Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat Cell Biol 6:1109–1113. https://doi.org/10.1038/ncb1186

    Article  CAS  PubMed  Google Scholar 

  177. Sorokin S (1962) Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol 15:363–377. https://doi.org/10.1083/jcb.15.2.363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sorokin SP (1968) Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 3:207–230

    Article  CAS  PubMed  Google Scholar 

  179. Spencer WJ, Lewis TR, Pearring JN, Arshavsky VY (2020) Photoreceptor discs: built like ectosomes. Trends Cell Biol 30:904–915. https://doi.org/10.1016/j.tcb.2020.08.005

    Article  PubMed  Google Scholar 

  180. Spencer WJ, Lewis TR, Phan S, Cady MA, Serebrovskaya EO, Schneider NF, Kim KY, Cameron LA, Skiba NP, Ellisman MH, Arshavsky VY (2019) Photoreceptor disc membranes are formed through an Arp2/3-dependent lamellipodium-like mechanism. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1913518117

    Article  PubMed  PubMed Central  Google Scholar 

  181. Spira AW, Milman GE (1979) The structure and distribution of the cross-striated fibril and associated membranes in guinea pig photoreceptors. Am J Anat 155:319–337. https://doi.org/10.1002/aja.1001550304

    Article  CAS  PubMed  Google Scholar 

  182. Spitznas M, Hogan MJ (1970) Outer segments of photoreceptors and the retinal pigment epithelium. Interrelationship in the human eye. Arch Ophthalmol 84:810–819. https://doi.org/10.1001/archopht.1970.00990040812022

    Article  CAS  PubMed  Google Scholar 

  183. Steib E, Laporte MH, Gambarotto D, Olieric N, Zheng C, Borgers S, Olieric V, Le Guennec M, Koll F, Tassin AM, Steinmetz MO, Guichard P, Hamel V (2020) WDR90 is a centriolar microtubule wall protein important for centriole architecture integrity. eLife 9:e57205. https://doi.org/10.7554/eLife.57205

  184. Steinberg R, Wood I (1975) Clefts and microtubules of photoreceptor outer segments in the retina of the domestic cat. J Ultrastructural Res 51:397–403

    Article  Google Scholar 

  185. Stowe TR, Wilkinson CJ, Iqbal A, Stearns T (2012) The centriolar satellite proteins Cep72 and Cep290 interact and are required for recruitment of BBS proteins to the cilium. Mol Biol Cell 23:3322–3335. https://doi.org/10.1091/mbc.E12-02-0134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sui H, Downing KH (2006) Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography. Nature 442:475–478. https://doi.org/10.1038/nature04816

    Article  CAS  PubMed  Google Scholar 

  187. Sun Q, Picascia T, Khan AUM, Brenna C, Heuveline V, Schmaus A, Sleeman JP, Gretz N (2020) Application of ethyl cinnamate based optical tissue clearing and expansion microscopy combined with retrograde perfusion for 3D lung imaging. Exp Lung Res 1–16. https://doi.org/10.1080/01902148.2020.1829183

  188. Sun S, Fisher RL, Bowser SS, Pentecost BT, Sui H (2019) Three-dimensional architecture of epithelial primary cilia. Proc Natl Acad Sci U S A 116:9370–9379. https://doi.org/10.1073/pnas.1821064116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sung C-H, Chuang J-Z (2010) The cell biology of vision. J Cell Biol 190:953–963. https://doi.org/10.1083/jcb.201006020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tai AW, Chuang JZ, Bode C, Wolfrum U, Sung CH (1999) Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97:877–887

    Article  CAS  PubMed  Google Scholar 

  191. Takao D, Dishinger JF, Kee HL, Pinskey JM, Allen BL, Verhey KJ (2014) An assay for clogging the ciliary pore complex distinguishes mechanisms of cytosolic and membrane protein entry. Curr Biol 24:2288–2294. https://doi.org/10.1016/j.cub.2014.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Takao D, Verhey KJ (2016) Gated entry into the ciliary compartment. Cell Mol Life Sci 73:119–127. https://doi.org/10.1007/s00018-015-2058-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Takao D, Wang L, Boss A, Verhey KJ (2017) Protein interaction analysis provides a map of the spatial and temporal organization of the ciliary gating zone. Curr Biol 27:2296-2306.e3. https://doi.org/10.1016/j.cub.2017.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP, Asara JM, Tsou MF (2013) Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev 27:163–168. https://doi.org/10.1101/gad.207043.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tian G, Lodowski KH, Lee R, Imanishi Y (2014) Retrograde intraciliary trafficking of opsin during the maintenance of cone-shaped photoreceptor outer segments of Xenopus laevis. J Comp Neurol 522:3577–3589. https://doi.org/10.1002/cne.23630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Tian G, Ropelewski P, Nemet I, Lee R, Lodowski KH, Imanishi Y (2014) An unconventional secretory pathway mediates the cilia targeting of peripherin/rds. J Neurosci 34:992–1006. https://doi.org/10.1523/JNEUROSCI.3437-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Trivedi D, Colin E, Louie CM, Williams DS (2012) Live-cell imaging evidence for the ciliary transport of rod photoreceptor opsin by heterotrimeric kinesin-2. J Neurosci 32:10587–10593. https://doi.org/10.1523/JNEUROSCI.0015-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Trojan P, Krauss N, Choe HW, Giessl A, Pulvermuller A, Wolfrum U (2008) Centrins in retinal photoreceptor cells: regulators in the connecting cilium. Prog Retin Eye Res 27:237–259. https://doi.org/10.1016/j.preteyeres.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  199. Tsang SH, Sharma T (2018) Leber Congenital Amaurosis. Adv Exp Med Biol 1085:131–137. https://doi.org/10.1007/978-3-319-95046-4_26

    Article  PubMed  Google Scholar 

  200. Tsang WY, Bossard C, Khanna H, Peranen J, Swaroop A, Malhotra V, Dynlacht BD (2008) CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Dev Cell 15:187–197. https://doi.org/10.1016/j.devcel.2008.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Uzbekov R, Alieva I (2018) Who are you, subdistal appendages of centriole? Open Biol 8:180062. https://doi.org/10.1098/rsob.180062

  202. Vertii A, Hung HF, Hehnly H, Doxsey S (2016) Human basal body basics Cilia 5:13. https://doi.org/10.1186/s13630-016-0030-8

    Article  PubMed  Google Scholar 

  203. Volland S, Hughes LC, Kong C, Burgess BL, Linberg KA, Luna G, Zhou ZH, Fisher SK, Williams DS (2015) Three-dimensional organization of nascent rod outer segment disk membranes. Proc Natl Acad Sci U S A 112:14870–14875. https://doi.org/10.1073/pnas.1516309112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Volland S, Williams DS (2018) Preservation of photoreceptor nanostructure for electron tomography using transcardiac perfusion followed by high-pressure freezing and freeze-substitution. Adv Exp Med Biol 1074:603–607. https://doi.org/10.1007/978-3-319-75402-4_73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Vuolo L, Stevenson NL, Heesom KJ, Stephens DJ (2018) Dynein-2 intermediate chains play crucial but distinct roles in primary cilia formation and function. eLife 7:e39655. https://doi.org/10.7554/eLife.39655

  206. Wan W, Briggs JA (2016) Cryo-electron tomography and subtomogram averaging. Methods Enzymol 579:329–367. https://doi.org/10.1016/bs.mie.2016.04.014

    Article  CAS  PubMed  Google Scholar 

  207. Wang DY, Chan WM, Tam PO, Baum L, Lam DS, Chong KK, Fan BJ, Pang CP (2005) Gene mutations in retinitis pigmentosa and their clinical implications. Clin Chim Acta 351:5–16. https://doi.org/10.1016/j.cccn.2004.08.004

    Article  CAS  PubMed  Google Scholar 

  208. Wang J, Deretic D (2014) Molecular complexes that direct rhodopsin transport to primary cilia. Prog Retin Eye Res 38:1–19. https://doi.org/10.1016/j.preteyeres.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  209. Wassie AT, Zhao Y, Boyden ES (2019) Expansion microscopy: principles and uses in biological research. Nat Methods 16:33–41. https://doi.org/10.1038/s41592-018-0219-4

    Article  CAS  PubMed  Google Scholar 

  210. Wei Q, Xu Q, Zhang Y, Li Y, Zhang Q, Hu Z, Harris PC, Torres VE, Ling K, Hu J (2013) Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes. Nat Commun 4:2750. https://doi.org/10.1038/ncomms3750

    Article  CAS  PubMed  Google Scholar 

  211. Wensel TG (2012) Molecular biology of vision. In: Brady S (ed) Basic neurochemistry, principles of molecular, cellular, and medical neurobiology, 8th edn. Elsevier, London

    Google Scholar 

  212. Wensel TG, Gilliam JC (2015) Three-dimensional architecture of murine rod cilium revealed by cryo-EM. Methods Mol Biol 1271:267–292. https://doi.org/10.1007/978-1-4939-2330-4_18

    Article  PubMed  PubMed Central  Google Scholar 

  213. Wensel TG, Zhang Z, Anastassov IA, Gilliam JC, He F, Schmid MF, Robichaux MA (2016) Structural and molecular bases of rod photoreceptor morphogenesis and disease. Prog Retin Eye Res 55:32–51. https://doi.org/10.1016/j.preteyeres.2016.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Willig KI, Kellner RR, Medda R, Hein B, Jakobs S, Hell SW (2006) Nanoscale resolution in GFP-based microscopy. Nat Methods 3:721–723. https://doi.org/10.1038/nmeth922

    Article  CAS  PubMed  Google Scholar 

  215. Wolfrum U (1992) Cytoskeletal elements in arthropod sensilla and mammalian photoreceptors. Biol Cell 76:373–381

    Article  CAS  PubMed  Google Scholar 

  216. Yanagisawa H-a, Mathis G, Oda T, Hirono M, Richey EA, Ishikawa H, Marshall WF, Kikkawa M, Qin H (2014) FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas. Mol Biol Cell 25:1472–1483. https://doi.org/10.1091/mbc.E13-08-0464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Yang J, Adamian M, Li T (2006) Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol Biol Cell 17:1033–1040. https://doi.org/10.1091/mbc.E05-10-0943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Yang J, Gao J, Adamian M, Wen XH, Pawlyk B, Zhang L, Sanderson MJ, Zuo J, Makino CL, Li T (2005) The ciliary rootlet maintains long-term stability of sensory cilia. Mol Cell Biol 25:4129–4137. https://doi.org/10.1128/MCB.25.10.4129-4137.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Yang J, Li T (2005) The ciliary rootlet interacts with kinesin light chains and may provide a scaffold for kinesin-1 vesicular cargos. Exp Cell Res 309:379–389. https://doi.org/10.1016/j.yexcr.2005.05.026

    Article  CAS  PubMed  Google Scholar 

  220. Yang J, Liu X, Yue G, Adamian M, Bulgakov O, Li T (2002) Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J Cell Biol 159:431–440. https://doi.org/10.1083/jcb.200207153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Yang J, Liu X, Zhao Y, Adamian M, Pawlyk B, Sun X, McMillan DR, Liberman MC, Li T (2010) Ablation of whirlin long isoform disrupts the USH2 protein complex and causes vision and hearing loss. PLoS Genet 6:e1000955. https://doi.org/10.1371/journal.pgen.1000955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yang S, Bahl K, Chou HT, Woodsmith J, Stelzl U, Walz T, Nachury MV (2020) Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes. eLife 9:e55954. https://doi.org/10.7554/eLife.55954

  223. Yang TT, Chong WM, Wang WJ, Mazo G, Tanos B, Chen Z, Tran TMN, Chen YD, Weng RR, Huang CE, Jane WN, Tsou MB, Liao JC (2018) Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat Commun 9:2023. https://doi.org/10.1038/s41467-018-04469-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Yang TT, Su J, Wang WJ, Craige B, Witman GB, Tsou MF, Liao JC (2015) Superresolution pattern recognition reveals the architectural map of the ciliary transition zone. Sci Rep 5:14096. https://doi.org/10.1038/srep14096

    Article  CAS  PubMed  Google Scholar 

  225. Yang TT, Tran MNT, Chong WM, Huang CE, Liao JC (2019) Single-particle tracking localization microscopy reveals nonaxonemal dynamics of intraflagellar transport proteins at the base of mammalian primary cilia. Mol Biol Cell 30:828–837. https://doi.org/10.1091/mbc.E18-10-0654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ye F, Nager AR, Nachury MV (2018) BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone. J Cell Biol 217:1847–1868. https://doi.org/10.1083/jcb.201709041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ye X, Zeng H, Ning G, Reiter JF, Liu A (2014) C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. Proc Natl Acad Sci U S A 111:2164–2169. https://doi.org/10.1073/pnas.1318737111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Young RW (1967) The renewal of photoreceptor cells outer segments. J Cell Biol 33:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Young RW (1971) The renewal of rod and cone outer segments in the rhesus monkey. J Cell Biol 49:303–318. https://doi.org/10.1083/jcb.49.2.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Yu L, Li R, Zeng X, Wang H, Jin J, Yang G, Jiang R, Xu M (2020) Few shot domain adaptation for in situ macromolecule structural classification in cryo-electron tomograms. Bioinformatics. https://doi.org/10.1093/bioinformatics/btaa671

    Article  PubMed  PubMed Central  Google Scholar 

  231. Yuodelis C, Hendrickson A (1986) A qualitative and quantitative analysis of the human fovea during development. Vision Res 26:847–855. https://doi.org/10.1016/0042-6989(86)90143-4

    Article  CAS  PubMed  Google Scholar 

  232. Zalenski AA, Majumder S, De K, Venere M (2020) An interphase pool of KIF11 localizes at the basal bodies of primary cilia and a reduction in KIF11 expression alters cilia dynamics. Sci Rep 10:13946. https://doi.org/10.1038/s41598-020-70787-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Zhang P (2019) Advances in cryo-electron tomography and subtomogram averaging and classification. Curr Opin Struct Biol 58:249–258. https://doi.org/10.1016/j.sbi.2019.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Zhang Q, Yu D, Seo S, Stone EM, Sheffield VC (2012) Intrinsic protein-protein interaction-mediated and chaperonin-assisted sequential assembly of stable bardet-biedl syndrome protein complex, the BBSome. J Biol Chem 287:20625–20635. https://doi.org/10.1074/jbc.M112.341487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Zhao Y, Hong DH, Pawlyk B, Yue G, Adamian M, Grynberg M, Godzik A, Li T (2003) The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc Natl Acad Sci U S A 100:3965–3970. https://doi.org/10.1073/pnas.0637349100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zwettler FU, Reinhard S, Gambarotto D, Bell TDM, Hamel V, Guichard P, Sauer M (2020) Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM). Nat Commun 11:3388. https://doi.org/10.1038/s41467-020-17086-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is funded by the National Eye Institute of the U.S. National Institutes of Health (R01-EY026545, R01-EY031949, F32-EY027171, F31-EY028025, T32-EY007102), the Knights Templar Eye Foundation, and the Robert A. Welch Foundation (Q0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore G. Wensel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wensel, T.G., Potter, V.L., Moye, A. et al. Structure and dynamics of photoreceptor sensory cilia. Pflugers Arch - Eur J Physiol 473, 1517–1537 (2021). https://doi.org/10.1007/s00424-021-02564-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02564-9

Keywords

Navigation