Skip to main content
Log in

Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plant cell walls undergo dynamic changes in response to different environmental stress conditions. In response to water deficit, two related proline-rich glycoproteins, called p33 and p36, accumulate in the soluble fraction of the cell walls in Phaseolus vulgaris (Covarrubias et al. in Plant Physiol 107:1119–1128, 1995). In this work, we show that p33 and p36 are able to form a 240 kDa oligomer, which is found in the cell wall soluble fraction. We present evidence indicating that the highest accumulation of these proteins in response to water deficit occurs in the growing regions of common bean seedlings, particularly in the phloem tissues. These proteins were detected in P. vulgaris cell suspension cultures, where the p33/p36 ratio was higher under hyperosmotic conditions than in bean seedlings subjected to the same treatment. The results support a role for these proteins during the plant cell response to changes in its water status, and suggest that cell wall modifications are induced in active growing cells of common bean in response to water limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AP:

Alkaline phosphatase

dpa:

Days post-anthesis

PRP:

Proline-rich protein

References

  • Averyhart-Fullard V, Datta K, Marcus A (1988) A hydroxyproline-rich protein in the soybean cell wall. Proc Natl Acad Sci USA 85:1082–1085

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI, Busby CH, Fowke LC, Sammut M, Gubler F (1992) Improvements in immunostaining samples embedded in methacrylate: localization of microtubulues and other antigens throughout developing organs in plants of diverse taxa. Planta 187:405–413

    Article  Google Scholar 

  • Bernhardt C, Tierney ML (2000) Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation. Plant Physiol 122:705–714

    Article  PubMed  CAS  Google Scholar 

  • Bozarth CS, Mullet JE, Boyer JS (1987) Cell wall protens at low water potentials. Plant Physiol 85:261–267

    PubMed  CAS  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich cell wall protein: a novel, rapid defense response. Cell 70:21–30

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Brisson LF, Tenhaken R, Lamb C (1994) Function of oxidative cross-linking of a proline-rich plant cell wall protein. Plant Cell 6:1703–1712

    Article  PubMed  CAS  Google Scholar 

  • Cassab GI (1993) Localization of cell wall proteins using tissue-print western blot techniques. Methods Enzymol 218:682–688

    Article  PubMed  CAS  Google Scholar 

  • Cassab GI (1998) Plant cell wall proteins. Annu Rev Plant Phsyiol Mol Biol 49:281–309

    Article  CAS  Google Scholar 

  • Castonguay Y, Laberge S, Nadeau P, Vézina L-P (1994) A cold-induced gene from Medicago sativa encodes a bimodular protein similar to developmentally regulated proteins. Plant Mol Biol 24:799–804

    Article  PubMed  CAS  Google Scholar 

  • Colmenero-Flores JM, Campos F, Graciarrubio A, Covarrubias AA (1997) Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein. Plant Mol Biol 35:393–405

    Article  PubMed  CAS  Google Scholar 

  • Colmenero-Flores JM, Moreno LP, Smith C, Covarrubias AA (1999) PvLEA-18, a member of a new Late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Plant Physiol 120:93–103

    Article  PubMed  CAS  Google Scholar 

  • Covarrubias AA, Ayala JW, Reyes JL, Hernández M, Garciarrubio A (1995) Cell-wall proteins induced by water deficit in bean (Phaseolus vulgaris L) seedlings. Plant Physiol 107:1119–1128

    PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1991) Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new β-tubulin gene, and expression of genes enconding cell wall proteins. Plant Mol Biol 17:591–608

    Article  PubMed  CAS  Google Scholar 

  • Deutch CE, Winicov I (1995) Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol Biol 27:411–418

    Article  PubMed  CAS  Google Scholar 

  • Esau K (1965) Plant anatomy, 2nd edn. Wiley, New York

    Google Scholar 

  • Fancy DA, Kodadek T (1999) Chemistry for the analysis of protein-protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc Natl Acad Sci USA 96:6020–6024

    Article  PubMed  CAS  Google Scholar 

  • Freifelder D (1976) Physical biochemistry: applications to biochemistry and molecular biology, Chap. 11. Freeman, San Francisco

  • García-Gomez BI, Campos F, Hernández M, Covarrubias AA (2000) Two bean cell wall proteins more abundant during water deficit are high in proline and interact with a plasma membrane protein. Plant J 22:277–288

    Article  PubMed  Google Scholar 

  • Grabarek Z, Gergely J (1990) Zero-length crosslinking procedure with the use of active esters. Anal Biochem 185:131–135

    Article  PubMed  CAS  Google Scholar 

  • Hong JC, Nagao RT, Key JL (1989) Developmentally regulated expression of soybean proline-rich cell wall protein genes. Plant Cell 1:937–943

    Article  PubMed  CAS  Google Scholar 

  • Hong JC, Nagao RT, Key JL (1990) Characterization of a proline-rich cell wall protein gene family of soybean. A comparative analysis. J Biol Chem 265:2470–2475

    PubMed  CAS  Google Scholar 

  • Iraki NM, Singh N, Bressan RA, Carpita NC (1989) Cell walls of tobacco cells and changes in composition associated with reduced growth upon adaptation to water and saline stress. Plant Physiol 91:48–53

    PubMed  CAS  Google Scholar 

  • Jose-Estanyol M, Ruiz-Avila L, Puigdomenench P (1992) A maize embryo-specific gene encodes a proline-rich and hydrophobic protein. Plant Cell 4:413–423

    Article  PubMed  CAS  Google Scholar 

  • Kieliszewski MJ, Lamport DTA (1994) Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J 5:157–172

    Article  PubMed  CAS  Google Scholar 

  • Kleis-San Francisco SM, Tierney ML (1990) Isolation and characterization of a proline-rich cell wall protein from soybean seedlings. Plant Physiol 94:1897–1902

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriohage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Leon P, Planckaert F, Walbot V (1991) Transient gene expression in protoplasts of Phaseolus vulgaris isolated from a cell suspension culture. Plant Physiol 95:968–972

    PubMed  CAS  Google Scholar 

  • Lillie H, Brown SS (1987) Artifactual immunofluorescent labeling in yeast, demonstrated by affinity purification of antibody. Yeast 3:63–70

    Article  PubMed  CAS  Google Scholar 

  • Marshall JG, Dumbroff EB, Thatcher BJ, Martin B, Rutledge RG, Blumwald E (1999) Synthesis and oxidative insolubilization of cell-wall proteins during osmotic stress. Planta 208:401–408

    Article  PubMed  CAS  Google Scholar 

  • Martin RG, Ames BN (1961) A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem 236:1372–1379

    PubMed  CAS  Google Scholar 

  • Menke U, Renault N, Mueller-Roeber B (2000) StGCPRP, a potato gene strongly expressed in stomatal guard cells, defines a novel type of repetitive proline-rich proteins. Plant Physiol 122:677–686

    Article  PubMed  CAS  Google Scholar 

  • Millar DJ, Slabas AR, Sidebottom C, Smith CG, Allen AK (1992) A major stress-inducible M r -42 000 wall glycoprotein of French bean (Phaseolus vulgaris L.). Planta 187:176–184

    Article  CAS  Google Scholar 

  • Murphy AS, Hoogner KR, Peer WA, Taiz L (2002) Identification, purification, and molecular cloning of N-1-naphthylphtalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol 128:935–950

    Article  PubMed  CAS  Google Scholar 

  • Nonami H, Boyer JS (1989) Turgor and growth at low water potentials. Plant Physiol 89:798–804

    PubMed  Google Scholar 

  • Nonami H, Boyer JS (1993) Direct demonstration of a growth-induced water potential gradient. Plant Physiol 102:13–19

    PubMed  CAS  Google Scholar 

  • Robertson D, Wojtaszek P, Bolwell GP (1999) Stimulation of cell wall biosynthesis and structural changes in response to cytokinin- and elicitor-treatments of suspension-cultured Phaseolus vulgaris cells. Plant Physiol Biochem 37:611–622

    CAS  Google Scholar 

  • Ryser U, Schorderet M, Zhao G-F, Studer D, Ruel K, Hauf G, Keller B (1997) Structural cell-wall proteins in protoxylema development: evidence for repair process mediated by glycine-rich protein. Plant J 12:97–111

    Article  PubMed  CAS  Google Scholar 

  • Salts Y, Wachs R, Gruissem W, Barg R (1991) Sequence coding for a novel proline-rich protein preferentially expressed in young tomato fruits. Plant Mol Biol 17:149–150

    Article  PubMed  CAS  Google Scholar 

  • Scheres B, Van De Wiel C, Zalensky A, Horvath B, Spaink H, Van Eck H, Zwartkruis F, Wolters AM, Gloudemans T, Van Kammen A, Bisseling T (1990) The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction. Cell 60:281–294

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Jackowski G (1998) One-dimensional polyacrylamide gel electrophoresis. In: Hames BD (ed) Gel electrophoresis of proteins. A practical approach, 3rd edn. Oxford University Press, Oxford, pp 1–50

    Google Scholar 

  • Shong J, D’Ovidio R, Mehdy MC (1991) Negative and positive regulation of novel proline-rich protein mRNA by fungal elicitor and wounding. Plant J 1:345–354

    Article  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    Article  PubMed  CAS  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paedez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2210

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam K, Ranie J, Srinivasa BR, Sinha AM, Mahadevan S (1994) Cloning and sequence of a cDNA encoding a novel hybrid proline-rich protein associated with cytokinin-induced haustoria formation in Cuscuta reflexa. Gene 14:207–210

    Article  Google Scholar 

  • Tompa P (2003) Intrinsically unstructured proteins evolve by repeat expansion. Bioessays 25:847–855

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheet: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Van De Wiel C, Scheres B, Franssen H, Van Lierop M-J, Van Lammeren A, Van Kammen A, Bisseling T (1990) The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules. EMBO J 9:1–7

    PubMed  Google Scholar 

  • Verdoy D, Lucas MM, Covarrubias AA, De Felipe MR, Pueyo JJ (2004) Differential organ-specific response to salt stress and water deficit in nodulated bean (Phaseolus vulgaris). Plant Cell Environ 27:757–767

    Article  CAS  Google Scholar 

  • Vignols F, José-Estanyol M, Caparrós-Ruiz D, Rigau J, Puigdomènech P (1999) Involvement of a maize proline-rich protein in secondary cell wall formation as deduced from its specific mRNA localization. Plant Mol Biol 39:945–952

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K, Hoson T, Kamisaka S (1997) Changes in amounts and molecular mass distribution of cell-wall polysaccharides of wheat (Triticum aestivum L.) coleoptiles under water stress. J Plant Physiol 151:33–40

    CAS  Google Scholar 

  • Williamson MP (1994) The structure and function of proline-rich regions in proteins. Biochem J 297:249–260

    PubMed  CAS  Google Scholar 

  • Wilson RC, Long F, Maruoka EM, Cooper JB (1994) A new proline-rich early nodulin from Medicago trunculata is highly expressed in nodule meristematic cells. Plant Cell 6:1265–1275

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszek P, Bolwell GP (1995) Secondary cell-wall-specific glycoprotein(s) from french bean hypocotyls. Plant Physiol 108:1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszek P, Trethowan J, Bolwell GP (1995) Specificity in the immobilisation of cell wall proteins in response to different elicitor molecules in suspension-cultured cells of French bean (Phaseolus vulgaris L.). Plant Mol Biol 28:1075–1087

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Sharp RE, Durachko DM, Cosgrove DJ (1996) Growth maintenance of the maize primary root at low water potentials involves increases in cell- wall extension properties, expansin activity, and wall suceptibility to expansins. Plant Physiol 111:765–772

    PubMed  CAS  Google Scholar 

  • Wyatt RE, Nagao RT, Key JL (1992) Patterns of soybean proline-rich protein gene expression. Plant Cell 4:99–110

    Article  PubMed  CAS  Google Scholar 

  • Ye Z-H, Song Y-R, Marcus A, Varner JE (1991) Comparative localization of three classes of cell wall proteins. Plant J 1:175–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Vázquez (Facultad de Química-UNAM) for allowing the use of the FPLC equipment in his laboratory and E. García-Ramírez (Facultad de Química-UNAM) for technical assistance in p33 and p36 protein purification. We are also grateful to J. L. Reyes and G. Cassab (Instituto de Biotecnologia-UNAM) for critical reading of the manuscript and stimulating discussions, to X. Alvarado and P. Rueda (Instituto de Biotecnologia-UNAM) for technical support in microscopy techniques and in the obtainment of the P. vulgaris cell-suspension culture, respectively, and to E. Mata (Instituto de Biotecnologia-UNAM) for animal care during the antibody production. S. Cuéllar and M. Battaglia were supported by a scholarship from DGEP-UNAM. This work was partially funded by grants from the Dirección General de Asuntos del Personal Académico (DGAPA-UNAM) IN204496 and CONACyT-México 40603-Q.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra A. Covarrubias.

Additional information

Marina Battaglia and Rosa M. Solórzano contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battaglia, M., Solórzano, R.M., Hernández, M. et al. Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings. Planta 225, 1121–1133 (2007). https://doi.org/10.1007/s00425-006-0423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0423-9

Keywords

Navigation