Skip to main content
Log in

Metabolomic evaluation of pulsed electric field-induced stress on potato tissue

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Metabolite profiling was used to characterize stress responses of potato tissue subjected to reversible electroporation, providing insights on how potato tissue responds to a physical stimulus such as pulsed electric fields (PEF), which is an artificial stress. Wounded potato tissue was subjected to field strengths ranging from 200 to 400 V/cm, with a single rectangular pulse of 1 ms. Electroporation was demonstrated by propidium iodide staining of the cell nucleae. Metabolic profiling of data obtained through GC/TOF-MS and UPLC/TOF-MS complemented with orthogonal projections to latent structures clustering analysis showed that 24 h after the application of PEF, potato metabolism shows PEF-specific responses characterized by the changes in the hexose pool that may involve starch and ascorbic acid degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

DRE:

Dynamic range enhancement

GC/TOF-MS:

Gas chromatography/time-of-flight mass spectrometry

H-MCR:

Hierarchical multivariate curve resolution

MST:

Mass spectral tag

MSTFA:

N-Methyl-N-(trimethylsilyl)trifluoroacetamide

NIST:

National Institute of Standards and Technology

OPLS:

Orthogonal projections to latent structures

PEF:

Pulsed electric field

RI:

Retention index

UPLC/TOF-MS:

Ultra performance liquid chromatography/time-of-flight mass spectrometry

References

  • Aronsson K, Lindgren M, Johansson BR, Rönner U (2001) Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli, Listeria innocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae. Innov Food Sci Emerg Tech 2:41–54

    Article  Google Scholar 

  • Arora R, Palta JP (1991) A loss in the plasma membrane ATPase activity and its recovery coincides with incipient freeze-thaw injury and post-thaw recovery in onion bulb scale tissue. Plant Physiol 95:846–852

    Article  PubMed  CAS  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:99–321

    Article  Google Scholar 

  • Balasa A (2007) Impact of pulses electric field treatment on stability and production of health related components in plant tissue. Available via DIALOG. http://www2.tu-berlin.de/~foodtech/pdf/balasa.pdf

  • Beckmann M, Enot DP, Overy DP, Draper J (2007) Representation, comparison, and interpretation of metabolome fingerprint for total composition analysis and quality trait investigation in potato cultivars. J Agric Food Chem 55:3444–3451

    Article  PubMed  CAS  Google Scholar 

  • Bernards MA, Fleming WD, Llewellyn DB, Priefer R, Yang X, Sabatino A, Plourde GL (1999) Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol 121:135–145

    Article  PubMed  CAS  Google Scholar 

  • Blenkinsop RW, Yada RY, Marangoni AG (2004) Metabolic control of low-temperature sweetening in potato tubers during postharvest storage. Hortic Rev 30:317–354

    CAS  Google Scholar 

  • Bolwell GP, Butt VS, Davies DR, Zimmerlin A (1995) The origin of the oxidative burst in plants. Free Radical Res 6:517–532

    Article  Google Scholar 

  • Bradley DJ, Kjelbom P, Lamb CJ (1992) Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:21–30

    Article  PubMed  CAS  Google Scholar 

  • Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom 20:341–351

    Article  Google Scholar 

  • Chalermchat Y (2005) Effects of pulsed electric fields on plant tissue. Dissertation, Lund University

  • Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    Article  PubMed  CAS  Google Scholar 

  • Espen L, Morgutti S, Abruzzese A, Negrini N, Rivetta A, Quattrini MM, Cocucci M, Cocucci SM (1999) Changes in the potato (Solanum tuberosum L.) tuber at the onset of dormancy and during storage at 23°C and 3°C. I. Biochemical and physiological parameters. Potato Res 42:189–201

    Article  CAS  Google Scholar 

  • Friedman M (1997) Chemistry, biochemistry, and dietary role of potato polyphenols. A review. J Agric Food Chem 45:1523–1540

    Article  Google Scholar 

  • Gabriel B, Teissié J (1994) Generation of reactive oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability. Eur J Bioch 223:25–33

    Article  CAS  Google Scholar 

  • Gómez Galindo F, Sjöholm I, Rasmusson AG, Widell S, Kaack K (2007) Plant stress physiology: opportunities and challenges for the food industry. Crit Rev Food Sci Nut 47:729–763

    Google Scholar 

  • Gómez Galindo F, Vernier T, Dejmek P, Vicente A, Gundersen M (2008a) Pulsed electric field reduces the permeability of potato cell wall. Bioelectromagnetics 29:296–301

    Article  Google Scholar 

  • Gómez Galindo F, Wadsö L, Vicente A, Dejmek P (2008b) Exploring metabolic responses of potato tissue induced by electric pulses. Food Biophysics 3:352–360

    Article  Google Scholar 

  • Gray GR, Heath D (2005) A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting. Physiol Plant 124:236–248

    Article  CAS  Google Scholar 

  • Guderjan M, Topfl S, Angersbach A, Knorr D (2005) Impact of pulsed electric field treatment on the recovery and quality of plant oils. J Food Eng 67:281–287

    Article  Google Scholar 

  • Guderjan M, Elez-Martínez P, Knorr D (2007) Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innov Food Sci Emreg Tech 8:55–62

    Article  CAS  Google Scholar 

  • Gullberg J, Jonsson P, Nordstöm A, Sjöström M, Moritz T (2004) Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal Biochem 331:283–295

    Article  PubMed  CAS  Google Scholar 

  • Herppich WB, Linke M, Landahl S, Gzik A (2001) Pre-harvest and postharvest responses of radish to reduced water supply during growth. Acta Hort 553:89–90

    Google Scholar 

  • Hu F, Furihata K, Kato Y, Tanokura M (2007) Nondestructive quantification of organic compounds in whole milk without pretreatment by two-dimensional NMR spectroscopy. J Agric Food Chem 55:4307–4311

    Article  PubMed  CAS  Google Scholar 

  • Huhman DV, Sumner LW (2002) Metabolic profiling of saponines in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59:347–360

    Article  PubMed  CAS  Google Scholar 

  • Jeong ML, Jiang H, Chen HS, Tsai CJ, Harding SA (2004) Metabolic profiling of the sink-to-source transition in developing leaves of quaking aspen. Plant Physiol 136:3364–3375

    Article  PubMed  CAS  Google Scholar 

  • Jonsson P, Gullberg J, Nordström A, Kusano M, Kowalczyk M, Sjöström M, Moritz T (2004) A strategy for identifying differences in large series of metabolic samples analysed by GC/MS. Anal Chem 76:1738–1745

    Article  PubMed  CAS  Google Scholar 

  • Jonsson P, Johansson ES, Wuolikainen A, Lindberg J, Schuppe-Koistinen I, Kusano M, Sjöström M, Trygg J, Moritz T, Antti H (2006) Predicting metabolite profiling applying hierarchical multivariate curve resolution to GC-MS data—a potential tool for multi-parametric diagnosis. J Proteome Res 5:1407–1414

    Article  PubMed  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed  CAS  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  PubMed  CAS  Google Scholar 

  • Loewus FA (1999) Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52:193–210

    Article  CAS  Google Scholar 

  • Lulai EC, Corsini DL (1998) Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing. Physiol Mol Plant Path 53:209–222

    Article  CAS  Google Scholar 

  • Matsuda F, Morino K, Miyashita M, Miyagawa H (2003) Metabolic flux analysis of the phenylpropanoid pathway in wound-healing potato tuber tissue using stable isotope-label tracer and LC–MS spectroscopy. Plant Cell Physiol 44:510–517

    Article  PubMed  CAS  Google Scholar 

  • Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R (2006) Metabolite profiling of grape: flavonoids and anthocyanins. J Agric Food Chem 54:7692–7702

    Article  PubMed  CAS  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos RCH (2006) A liquid chromatography–mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205–1218

    Article  PubMed  CAS  Google Scholar 

  • Pereira GE, Gaudillere JP, Pieri P, Hilbert G, Maucourt M, Deberde C, Moing A, Rolin D (2006) Microclimate influence on mineral and metabolomic profiles of grape berries. J Agric Food Chem 54:6765–6775

    Article  PubMed  CAS  Google Scholar 

  • Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant sterols, biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80:939–966

    Article  CAS  Google Scholar 

  • Razem F, Bernards MA (2002) Hydrogen peroxide is required for ploy(phenolic) domain formation during wound-induced suberization. J Agric Food Chem 50:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133:84–99

    Article  Google Scholar 

  • Sabri N, Pelissier B, Teissié J (1996) Electropermeabilization of intact maize cells induces an oxidative stress. Eur J Bioch 238:737–743

    Article  CAS  Google Scholar 

  • Schauer N, Steinhauser D, Strelkov D, Scomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forber MG, Willmitzer L, Fernie AR, Kopka J (2005) CG-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579:1332–1337

    Article  PubMed  CAS  Google Scholar 

  • Shohael AM, Ali MB, Yu KW, Hahn EJ, Islam R, Paek KY (2006) Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochem 41:1179–1185

    Article  CAS  Google Scholar 

  • Showalter AM, Varner JE (1987) Plant hydroxyproline-rich glycoproteins. In: Marcus A (ed) The biochemistry of plants. A comprehensive treatise. Academic Press, San Diego, pp 485–520

    Google Scholar 

  • Teissié J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview or our present (lack of?) knowledge. Biochem Biophys Acta 1724:270–280

    PubMed  Google Scholar 

  • Vayda ME, Schaeffer HJ (1988) Hypoxic stress inhibits the appearance of wound-response proteins in potato tubers. Plant Physiol 88:805–809

    Article  PubMed  CAS  Google Scholar 

  • von Wirén N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107–1114

    Article  Google Scholar 

  • Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435

    PubMed  CAS  Google Scholar 

  • Weaver JC (2000) Electroporation of cells and tissues. IEEE Trans Plasma Sci 28:24–33

    Article  CAS  Google Scholar 

  • Wishart DS (2008) Metabolomics: applications to food science and nutrition research. Trends Food Sci Tech 19:393–482

    Article  Google Scholar 

  • Yang WL, Bernards MA (2007) Metabolite profiling of potato (Solanum tuberosum L.) tubers during wound-induced suberization. Metabolomics 3:147–159

    Article  CAS  Google Scholar 

  • Ye H, Huang LL, Chen SD, Zhong JJ (2004) Pulsed electric fields stimulates plant secondary metabolism in suspension cultures of Taxus chinensis. Biotech Bioeng 88:788–795

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Susanne Widell from the Department of Cell and Organism Biology, Lund University, Sweden, for the use of microscopic facilities. This study was supported by grants from the Portuguese Foundation of Science (FCT, Portugal) and The Royal Physiographic Society in Lund, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Gómez Galindo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galindo, F.G., Dejmek, P., Lundgren, K. et al. Metabolomic evaluation of pulsed electric field-induced stress on potato tissue. Planta 230, 469–479 (2009). https://doi.org/10.1007/s00425-009-0950-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0950-2

Keywords

Navigation