Skip to main content
Log in

Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Citrate, a major determinant of citrus fruit quality, accumulates early in fruit development and declines towards maturation. The isomerization of citrate to isocitrate, catalyzed by aconitase is a key step in acid metabolism. Inhibition of mitochondrial aconitase activity early in fruit development contributes to acid accumulation, whereas increased cytosolic activity of aconitase causes citrate decline. It was previously hypothesized that the block in mitochondrial aconitase activity, inducing acid accumulation, is caused by citramalate. Here, we investigated the effect of citramalate and of another aconitase inhibitor, oxalomalate, on aconitase activity and regulation in callus originated from juice sacs. These compounds significantly increased citrate content and reduced the enzyme’s activity, while slightly inducing its protein level. Citramalate inhibited the mitochondrial, but not cytosolic form of the enzyme. Its external application to mandarin fruits resulted in inhibition of aconitase activity, with a transient increase in fruit acidity detected a few weeks later. The endogenous level of citramalate was analyzed in five citrus varieties: its pattern of accumulation challenged the notion of its action as an endogenous inhibitor of mitochondrial aconitase. Metabolite profiling of oxalomalate-treated cells showed significant increases in a few amino acids and organic acids. The activities of alanine transaminase, aspartate transaminase and aspartate kinase, as well as these of two γ-aminobutyrate (GABA)-shunt enzymes, succinic semialdehyde reductase (SSAR) and succinic semialdehyde dehydrogenase (SSAD) were significantly induced in oxalomalate-treated cells. It is suggested that the increase in citrate, caused by aconitase inhibition, induces amino acid synthesis and the GABA shunt, in accordance with the suggested fate of citrate during the acid decline stage in citrus fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GABA:

γ-Aminobutyrate

ICDH:

Isocitrate dehydrogenase

2OG:

2-Oxoglutarate

SSAR:

Succinic semialdehyde reductase

SSAD:

Succinic semialdehyde dehydrogenase

TA:

Total titratable acid

TCA:

Tricarboxylic acid

References

  • Adinolfi A, Guarrier V, Olezza S, Ruffo A (1971) Inhibition by oxalomalate of rat liver mitochondrial and extramitochondrial aconitate hydratase. Biochem J 125:557–562

    PubMed  CAS  Google Scholar 

  • Allan WL, Simpson JP, Clark SM, Shelp BJ (2008) γ-Hydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation by redox balance and glyoxylate reductase isoforms. J Exp Bot 59:2555–2564

    Article  PubMed  CAS  Google Scholar 

  • Allan WL, Clark SM, Hoover JG, Shelp BJ (2009) Role of plant glyoxylate reductases during stress: a hypothesis. Biochem J 423:15–22

    Article  PubMed  CAS  Google Scholar 

  • Arnaud N, Ravet K, Borlotti A, Touraine B, Boucherez J, Fizames C, Briat JF, Cellier F, Gaymard F (2007) The iron-responsive element (IRE)/iron-regulatory protein 1 (IRP1)-cytosolic aconitase iron-regulatory switch does not operate in plants. Biochem J 405:523–531

    Article  PubMed  CAS  Google Scholar 

  • Araujo WL, Nunes-Nesi A, Trenkamp S, Bunik VI, Fernie AR (2008) Inhibition of 2-oxoglutarate dehydrogenase in potato tuber suggest the enzyme is limiting for respiration and confirms its importance in nitrogen assimilation. Plant Physiol 148:1782–1792

    Article  PubMed  CAS  Google Scholar 

  • Azevedo RA, Lancien M, Lea PJ (2006) The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 30:143–162

    Article  PubMed  CAS  Google Scholar 

  • Bernard DG, Cheng Y, Zhao Y, Balk J (2009) An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron–sulfur proteins in Arabidopsis. Plant Physiol 151:590–602

    Article  PubMed  CAS  Google Scholar 

  • Bogin E, Wallace A (1966) Organic acid synthesis and accumulation in sweet and sour lemon fruit. J Am Soc Hort Sci 89:182–194

    CAS  Google Scholar 

  • Bouché N, Fait A, Bouchez D, Møller SG, Fromm F (2003) Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA 100:6843–6849

    Article  PubMed  Google Scholar 

  • Busch KN, Fromm F (1999) Plant Succinic semialdehyde dehydrogenase: cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol 121:589–598

    Article  PubMed  CAS  Google Scholar 

  • Carrari F, Nunes-Nesi A, Gibon Y, Lytovchenko A, Loureiro ME, Fernie AR (2003) Reduced expression of aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminated leaves of wild species tomato. Plant Physiol 133:1322–1335

    Article  PubMed  CAS  Google Scholar 

  • Cercos M, Soler G, Iglesias DJ, Gadea J, Forment J, Talon M (2006) Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol Biol 62:513–527

    Article  PubMed  CAS  Google Scholar 

  • Chen XJ, Wang X, Butow RA (2005) Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA. Proc Natl Acad Sci USA 104:13738–13743

    Article  Google Scholar 

  • Cooper TG, Beevers H (1960) Mitochondria and glyoxysomes from castor bean endosperm. J Biol Chem 244:3507–3513

    Google Scholar 

  • Deck KM, Vasanthakumar A, Anderson SA, Goforth JB, Kennedy M, Antholine WE, Eisenstein RS (2009) Evidence that phosphorylation of iron regulatory protein 1 at serine 138 destabilizes the [4Fe–4S] cluster in cytosolic aconitase by enhancing 4Fe–3Fe cycling. J Biol Chem 284:12701–12709

    Article  PubMed  CAS  Google Scholar 

  • de Kraker J-W, Luck K, Textor S, Tokuhisa JG, Gershenzon J (2007) Two Arabidopsis genes (IPMS1 and IPMS2) encode isopropylmalate synthase, the branchpoint step in the biosynthesis of leucine. Plant Physiol 143:970–986

    Article  PubMed  Google Scholar 

  • de Sousa CAF, Sodek L (2003) Alanine metabolism and alanine aminotransferase activity in soybean (Glycine max) during hypoxia of the root system and subsequent return to normoxia. Env Exp Bot 50:1–8

    Article  Google Scholar 

  • Drapier JC, Hirling H, Wietzerbin J, Kaldy P, Kuhn LC (1994) Reciprocal modulation of aconitase activity and RNA-binding activity of iron regulatory factor by nitric oxide. Adv Exp Med Biol 356:141–148

    PubMed  CAS  Google Scholar 

  • Duggleby RG, Pang SS (2000) Acetohydroxyacid synthase. J Biochem Mol Biol 33:1–36

    CAS  Google Scholar 

  • Eprintsev AT, Zemylyanukhin LA, Aleksyuk MP (1995) Purification and some properties of aconitase hydrase from maize cyme. Biochemistry (Moscow) 60:939–943

    Google Scholar 

  • Fait A, Fromm F, Walter D, Galili G, Fernie AR (2007) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19

    Article  PubMed  Google Scholar 

  • Erickson LC (1968) The general physiology of citrus. In: Reuther W, Batchelor LD, Webber HJ (eds) The citrus industry, vol 2. University of California, Riverside, pp 86–126

    Google Scholar 

  • Festa M, Colonna A, Pietropaolo C, Ruffo A (2000) Oxalomalate, a competitive inhibitor of aconitase, modulates the RNA-binding activity of iron-regulatory proteins. Biochem J 348:315–320

    Article  PubMed  CAS  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signaling. J Exp Bot 58:2339–2358

    Article  PubMed  CAS  Google Scholar 

  • Good AG, Muench DG (1992) Purification and characterization of an anaerobically induced alanine aminotransferase from barley roots. Plant Physiol 99:520–1525

    Article  Google Scholar 

  • Gruer MJ, Artymiuk PJ, Guest JR (1997) The aconitase family—three structural variations on a common theme. Trends Biochem Sci 22:3–6

    Article  PubMed  CAS  Google Scholar 

  • Guarrier V, Buffa P (1969) Inhibition by fluorocitrate of rat liver mitochondrial and extramitochondrial aconitate hydratase. Biochem J 113:853–862

    Google Scholar 

  • Hodges M (2002) Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation. J Exp Bot 53:577–585

    Article  Google Scholar 

  • Hodges M, Flesch V, Gálvez S, Bismuth E (2003) Higher plant NADP+-dependent isocitrate dehydrogenases, ammonium assimilation and NADPH production. Plant Physiol Biochem 41:577–585

    Article  CAS  Google Scholar 

  • Hoover GJ, Van Cauwenberghe OR, Breitkreuz KE, Clarck SM, Merrill AR, Shelp BJ (2007) Characteristics of an Arabidopsis glyoxylate reductase: general biochemical properties and substrate specificity for the recombinant protein, and developmental expression and implications for glyoxylate and succinic semialdehyde metabolism in planta. Can J Bot 85:883–895

    Article  CAS  Google Scholar 

  • Howell D, Xu H, White R (1999) (R)-citramalate synthase in methanogenic archae. J Bacteriol 181:331–333

    PubMed  CAS  Google Scholar 

  • Ingebretsen OC (1976) Mechanism of the inhibitory effect of glyoxylate plus oxaloacetate and oxalomalate on the NADP-specific isocitrate dehydrogenase. Biochem Biophys Acta 452:302–309

    PubMed  CAS  Google Scholar 

  • Joshi V, Laubengayer KM, Schauer N, Fernie AR, Jandera G (2006) Two Arabidopsis threonine aldolases are nonredundant and compete with threonine deaminase for a common substrate pool. Plant Cell 18:3564–3575

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Park JW (2005) Oxalomalate, a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase, regulates heat shock-induced apoptosis. Biochem Biophys Res Commun 337:685–691

    Article  PubMed  CAS  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U, Beguin F, Gujerkel G (1970) A factor preventing major head protein of bacteriophage t4 from random aggregation. J Mol Biol 47:69–72

    Article  PubMed  CAS  Google Scholar 

  • Lauble H, Kennedy MC, Emptage MH, Beinert H, Stout CD (1996) The reaction of fluorocitrate with aconitase and the crystal structure of the enzyme-inhibitor complex. Proc Natl Acad Sci USA 93:13699–13703

    Article  PubMed  CAS  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396

    Article  PubMed  CAS  Google Scholar 

  • McCourt JA, Duggleby RG (2006) Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31:173–210

    Article  PubMed  CAS  Google Scholar 

  • Moeder W, del Pozo Olga, Navarre DA, Martin GB, Klessig DF (2007) Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana. Plant Mol Biol 63:273–287

    Google Scholar 

  • Müller ML, Irkens-Kiesecker U, Rubinstein BLT, Taiz L (1996) On the mechanism of hyperacidification in lemon. Comparison of the vacuolar H+-ATPase activities of fruits and epicotyls. J Biol Chem 271:1916–1924

    Article  PubMed  Google Scholar 

  • Navarre DA, Wendehenne D, Durner J, Noad R, Klessig DF (2000) Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol 122:573–582

    Article  PubMed  CAS  Google Scholar 

  • Popov VN, Eprintsev AT, Fedorin DN, Fomenko OY, Igamberdiev AU (2007) Role of transamination in the mobilization of respiratory substrates in germinating seeds of castor oil plants. Appl Biochem Microbiol 43:341–346

    Article  CAS  Google Scholar 

  • Rocha M, Licausi F, Araújo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT (2010) Glycolysis and tricarboxylic acid cycle are linked bu alanine amino transferase during hypoxia induced by waterlogging of Lotus japonicas. Plant Physiol 152:1501–1513

    Article  PubMed  CAS  Google Scholar 

  • Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133:84–99

    Article  PubMed  CAS  Google Scholar 

  • Saas J, Ziegelbauer K, von Haeseler A, Fast B, Boshart M (2000) A developmentally regulated aconitase related to iron-regulatory protein-1 is localized in the cytoplasm and in the mitochondrion of Trypanosoma brucei. J Biol Chem 275:2745–2755

    Article  PubMed  CAS  Google Scholar 

  • Sadka A, Artzi B, Cohen L, Dahan E, Hasdai D, Tagari E, Erner Y (2000a) Arsenite reduces acid content in Citrus fruit, inhibits activity of citrate synthase but induces its gene expression. J Am Soc Hort Sci 125:288–293

    CAS  Google Scholar 

  • Sadka A, Dahan E, Cohen L, Marsh KB (2000b) Aconitase activity and expression during the development of lemon fruit. Physiol Plant 108:255–262

    Article  CAS  Google Scholar 

  • Sadka A, Dahan E, Or E, Cohen L (2000c) NADP+-isocitrate dehydrogenase gene expression and isozyme activity during citrus fruit development. Plant Sci 158:173–181

    Article  PubMed  CAS  Google Scholar 

  • Sadka A, Dahan E, Or E, Roose ML, Cohen L (2001) A comparative analysis of mitochondrial citrate synthase gene structure, transcript level and enzymatic activity in acidless and acid-containing Citrus varieties. Aust J Plant Physiol 28:383–390

    CAS  Google Scholar 

  • Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J (2005) GC–MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579:1332–1337

    Article  PubMed  CAS  Google Scholar 

  • Sekizawa Y, Maragoudakis ME, King TE, Cheldelin VH (1966) Glutamate biosynthesis in an organism lacking a Krebs tricarboxylic acid cycle. V. Isolation of alpha-hydroxy-gamma-ketoglutarate (HKG) in Acetobacter suboxydans. Biochemistry 5:2392–2398

    Article  PubMed  CAS  Google Scholar 

  • Shannon LM, Marcus A (1962) γ-Methyl-γ-hydroxy-α-ketoglutaric aldolase. J Biol Chem 237:3348–3353

    PubMed  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446–452

    Article  PubMed  Google Scholar 

  • Shimada T, Nakano R, Shulaev V, Sadka A, Blumwald E (2006) Vacuolar citrate/H+ symporter of citrus juice cells. Planta 224:472–480

    Article  PubMed  CAS  Google Scholar 

  • Shlizerman L, Marsh K, Blumwald E, Sadka A (2007) Iron-shortage-induced increase in citric acid content and reduction of cytosolic aconitase activity in Citrus fruit vesicles and calli. Physiol Plant 131:72–79

    Article  PubMed  CAS  Google Scholar 

  • Simpson JP, Clarck SM, Portt A, Allan WL, Makhmoudova A, Rochon A, Shelp BJ (2010) γ-Aminobutyrate transaminase limits the catabolism of γ-amino butyrate in cold-stressed Arabidopsis plants: insights from an overexpression mutant. Botany 88:522–527

    Article  CAS  Google Scholar 

  • Sinclair WB (1984) The biochemistry and physiology of the lemon and other citrus fruits. University of California, Oakland

    Google Scholar 

  • Stitt M, Fernie AR (2003) From measurements of metabolites to metabolomics: an ‘on the fly’ perspective illustrated by recent studies of carbon-nitrogen interactions. Curr Opin Biotech 14:136–144

    Article  PubMed  CAS  Google Scholar 

  • Terol J, Soler G, Talon M, Cercos M (2010) The aconitate hydratase family from Citrus. BMC Plant Biol 10:222–235

    Article  PubMed  Google Scholar 

  • Volz K (2008) The functional duality of iron regulatory protein 1. Curr Opin Struct Biol 18:106–111

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Stumpf DK, Larkins BA (2001) Aspartate kinase 2. A candidate gene of a quantitative trait locus influencing free amino acid content in maize endosperm. Plant Physiol 125:1778–1787

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Zhang Y, Guo X, Ren S, Staempfli A, Chiao J, Jiang W, Zhao G (2004) Isoleucine synthesis in Leptospira interrogans serotype lai strain 56601 proceeds via a threonine-independent pathway. J Bacteriol 186:5400–5409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Binational Agricultural Research and Development Fund (Grant number US-4010-07) and by Grant number 203-552 of the Chief Scientist of the Ministry of Agriculture and Rural Development. Contribution from the Agricultural Research Organization, The Institute of Plant Sciences, Bet Dagan, Israel, No. 106/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avi Sadka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degu, A., Hatew, B., Nunes-Nesi, A. et al. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis. Planta 234, 501–513 (2011). https://doi.org/10.1007/s00425-011-1411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1411-2

Keywords

Navigation