Skip to main content
Log in

Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Hypoxia leads to NO formation in poplar roots. Additionally, either NO or a NO derivative is transported from the roots to the shoot causing NO emission from aboveground plant organs.

Nitric oxide (NO) is involved in the response of plants to various forms of stress including hypoxia. It also seems to play an important role in stomatal closure during stress exposure. In this study, we investigated the formation of NO in roots of intact poplar (Populus × canescens) plants in response to hypoxia, as well as its dependence on nitrate availability. We further addressed the question if root hypoxia triggers NO emission from aboveground plant parts, i.e., stems and leaves of young poplar trees. Our results indicate that NO is formed in poplar roots in response to hypoxia and that this production depends on the availability of nitrate and its conversion product nitrite. As long as nitrate was available in the nutrient solution, NO emission of roots occurred; in the range of the nitrate concentrations (10–100 µM) tested, NO emission was widely independent on nitrate concentration. However, the time period in which NO was emitted and the total amount of NO emitted strongly depended on the nitrate concentration of the solution. Hypoxia also led to increased NO emissions from the leaves and stems of the trees. There was a tight correlation between leaf and stem NO emission of hypoxia-treated plants. We propose that NO is produced by nitrate reductase in the roots and either NO itself, a metabolic NO precursor, or a NO derivative is transported in the xylem sap of the trees from the roots to the shoot thereby mediating NO emission from aboveground parts of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

PMSF:

Phenazinemethosulfate

NED:

N-(1-naphthyl)-ethylene-diamine dihydrochloride

PPFD:

Photosynthetically active photon flux density

nsHb:

Non-symbiotic hemoglobin

References

  • Benamar A, Rolletschek H, Borisjuk L, Avelange-Macherel MH, Curien G, Mostefai HA, Andriantsitohaina R, Macherel D (2008) Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia. Biochim Biophys Acta 1777:1268–1275

    Article  CAS  PubMed  Google Scholar 

  • Black BL, Fuchigami LH, Coleman GD (2002) Partitioning of nitrate assimilation among leaves, stems and roots of poplar. Tree Physiol 22:717–724

    Article  CAS  PubMed  Google Scholar 

  • Botrel A, Magne C, Kaiser W (1996) Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia. Plant Physiol Biochem 34:645–652

    CAS  Google Scholar 

  • Brandão AD, Sodek L (2009) Nitrate uptake and metabolism by roots of soybean plants under oxygen deficiency. Braz J Plant Physiol 21:13–23

    Article  Google Scholar 

  • Brunswick P, Cresswell CF (1988) Nitrite uptake into intact pea chloroplasts I. Kinetics and relationship with nitrite assimilation. Plant Physiol 86:378–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Xiao Q, Wu F, Pei Z, Wang J, Wu Y, Zheng H (2010) Nitric oxide emission from barley seedlings and detached leaves and roots treated with nitrate and nitrite. Plant Soil Environ 56:201–208

    CAS  Google Scholar 

  • Chen J, Xiong D-Y, Wang W-H, Hu W-J, Simon M et al (2013) Nitric oxide mediates root K+/Na+ balance in a mangrove plant, Kandelia obovata, by enhancing the expression of AKT1-type K+ channel and Na+/H+ antiporter under high salinity. PLoS One. doi:10.1371/journal.pone.0071543

    Google Scholar 

  • Copolovici L, Niinemets Ü (2010) Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. Plant, Cell Environ 33:1582–1594

    CAS  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA 99:16314–16318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    Article  CAS  PubMed  Google Scholar 

  • Dordas C, Hasinoff BB, Rivoal J, Hill RD (2004) Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures. Planta 219:66–72

    Article  CAS  PubMed  Google Scholar 

  • Ehlting B, Dluznieska P, Dietrich H, Selle A, Teuber M, Hänsch R, Nehls U, Polle A, Schnitzler J-P, Rennenberg H, Gessler A (2007) Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula × alba). Plant, Cell Environ 30:796–811

    Article  CAS  Google Scholar 

  • García-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  PubMed  Google Scholar 

  • Gould K, Lamotte O, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant, Cell Environ 26:1851–1862

    Article  CAS  Google Scholar 

  • Gupta KJ, Kaiser WM (2010) Production and scavenging of nitric oxide by barley root mitochondria. Plant Cell Physiol 51:576–584

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011a) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Hebelstrup KH, Mur LA, Igamberdiev AU (2011b) Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide. FEBS Lett 585:3843–3849

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Shah JK, Brotman Y, Jahnke K, Willmitzer L, Kaiser WM, Bauwe H, Igamberdiev AU (2012) Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J Exp Bot 63:1773–1784

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, van Zanten M, Mandon J, Voesenek LA, Harren FJ, Cristescu SM, Moller IM, Mur LA (2012) Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. J Exp Bot 3:5581–5591

    Article  Google Scholar 

  • Heizmann U, Kreuzwieser J, Schnitzler J-P, Brüggemann N, Rennenberg H (2001) Assimilate transport in the xylem sap of Pedunculate oak (Quercus robur) saplings. Plant Biol 3:132–138

    Article  CAS  Google Scholar 

  • Hill RD (2012) Non-symbiotic haemoglobins—what’s happening beyond nitric oxide scavenging? AoB Plants. doi:10.1093/aobpla/pls004

    PubMed Central  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. College of Agriculture, University of California, California, Berkeley

    Google Scholar 

  • Igamberdiev AU, Hill RD (2009) Plant mitochondrial function during anaerobiosis. Ann Bot 103:259–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Seregelyes C, Manac N, Hill RD (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219:95–102

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Bonaventura C, Bonaventura J, Stamler JS (1996) S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380:221–226

    Article  CAS  PubMed  Google Scholar 

  • Kreuzwieser J, Rennenberg H (2014) Molecular and physiological responses of trees to waterlogging stress. Plant, Cell Environ 37:2245–2259

    CAS  Google Scholar 

  • Kreuzwieser J, Scheerer U, Rennenberg H (1999) Metabolic origin of acetaldehyde emitted by poplar (Populus tremula × P. alba) trees. J Exp Bot 50:757–765

    CAS  Google Scholar 

  • Kreuzwieser J, Fürniss S, Rennenberg H (2002) Impact of waterlogging on the N-metabolism of flood tolerant and non-tolerant tree species. Plant, Cell Environ 25:1039–1049

    Article  Google Scholar 

  • Kreuzwieser J, Papadopoulou E, Rennenberg H (2004) Interaction of flooding with carbon metabolism of forest trees. Plant Biol 6:299–306

    Article  CAS  PubMed  Google Scholar 

  • Kreuzwieser J, Hauberg J, Howell KA, Carroll A, Rennenberg H, Millar AH, Whelan J (2009) Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia. Plant Physiol 149:461–473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Millard P, Wendler R, Grassi G, Grelet G-A, Tagliavini M (2006) Translocation of nitrogen in the xylem of field-grown cherry and poplar trees during remobilization. Tree Physiol 26:527–536

    Article  CAS  PubMed  Google Scholar 

  • Morard P, Silvestre J, Lacoste L, Caumes E, Lamaze T (2004) Nitrate uptake and nitrite release by tomato roots in response to anoxia. J Plant Physiol 161:855–865

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Sivakumaran A, Mandon J, Cristescu SM, Harren FJ, Hebelstrup KH (2012) Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens. J Exp Bot 63:4375–4387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signaling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  CAS  PubMed  Google Scholar 

  • Oliveira HC, Salgado I, Sodek L (2013a) Involvement of nitrite in the nitrate-mediated modulation of fermentative metabolism and nitric oxide production of soybean roots during hypoxia. Planta 237:255–264

    Article  CAS  PubMed  Google Scholar 

  • Oliveira HC, Salgado I, Sodek L (2013b) Nitrite decreases ethanol production by intact soybean roots submitted to oxygen deficiency—a role for mitochondrial nitric oxide synthesis? Plant Signal Behav. doi:10.4161/psb.23578

    PubMed  Google Scholar 

  • Papen H, Geβler A, Zumbusch E, Rennenberg H (2002) Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input. Curr Microbiol 44:56–60

    Article  CAS  PubMed  Google Scholar 

  • Parent C, Berger A, Folzer H, Dat J, Crevècoeur M, Badot PM, Capelli N (2008) A novel nonsymbiotic hemoglobin from oak: cellular and tissue specificity of gene expression. New Phytol 177:142–154

    CAS  PubMed  Google Scholar 

  • Planchet E, Kaiser WM (2006) Nitric oxide production in plants: facts and fictions. Plant Signal Behav 1:46–51

    Article  PubMed Central  PubMed  Google Scholar 

  • Planchet E, Jagadis Gupta K, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    Article  CAS  PubMed  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  CAS  PubMed  Google Scholar 

  • Sander R (1999) Compilation of Henry’s Law constants for inorganic and organic species of potential importance in environmental chemistry (Version 3) http://www.henrys-law.org

  • Schneider A, Kreuzwieser J, Schupp R, Sauter JJ, Rennenberg H (1994) Thiol and amino acid composition of the xylem sap of poplar trees (Populus × canadensis ‘robusta’). Can J Bot 72:347–351

    Article  CAS  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Shingles R, Roh MH, McCarty RE (1996) Nitrite transport in chloroplast inner envelope vesicles. I. Direct measurement of proton-linked transport. Plant Physiol 112:1375–1381

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siebrecht S, Tischner R (1999) Changes in the xylem exudate composition of poplar (Populus tremula × P. alba)—dependent on the nitrogen and potassium supply. J Exp Bot 50:1797–1806

    CAS  Google Scholar 

  • Simon J, Stoelken G, Rienks M, Rennenberg H (2009) Rhizospheric NO affects N uptake and gene expression patterns in Fagus sylvatica. FEBS Lett 583:2907–2910

    Article  CAS  PubMed  Google Scholar 

  • Simon J, Dong F, Buegger F, Rennenberg H (2013) Rhizospheric NO affects N uptake and metabolism in Scots pine (Pinus sylvestris L.) seedlings depending on soil N availability and N source. Plant, Cell Environ 36:1019–1026

    Article  CAS  Google Scholar 

  • Stoimenova M, Kaiser W (2004) the role of nitrate reduction in plant flooding survival. Progress in botany. Springer, Berlin, pp 357–371

    Google Scholar 

  • Strohm M, Jouanin L, Kunert KJ, Pruvost C, Polle A, Foyer CH, Rennenberg H (1995) Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase. Plant J 7:141–145

    Article  CAS  Google Scholar 

  • Vanin AF, Svistunenko DA, Mikoyan VD, Serezhenkov VA, Fryer MJ, Baker NR, Cooper CE (2004) Endogenous superoxide production and the nitrite/nitrate ratio control the concentration of bioavailable free nitric oxide in leaves. J Biol Chem 279:24100–24107

    Article  CAS  PubMed  Google Scholar 

  • Zhao M-G, Chen L, Zhang L-L, Zhang W-H (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are most grateful to Prof Werner Kaiser and Prof Rainer Hedrich (both University of Würzburg, Germany) for introduction into NO measurements and for providing the NO analyzers. Bin Liu was supported by a grant of the China Scholarship Council (Grant # 2010630072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Kreuzwieser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Rennenberg, H. & Kreuzwieser, J. Hypoxia induces stem and leaf nitric oxide (NO) emission from poplar seedlings. Planta 241, 579–589 (2015). https://doi.org/10.1007/s00425-014-2198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2198-8

Keywords

Navigation