Skip to main content
Log in

PbrPOE21 inhibits pear pollen tube growth in vitro by altering apical reactive oxygen species content

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Genome-wide identification, tissue-specific expression analysis and functional characterization of selected genes containing the pear Pollen Olea europaea I domain reveal their roles in pollen tube growth.

Abstract

Genes containing the Pollen Olea europaea I (POE) domain play crucial roles in diverse growth and developmental processes. Nevertheless, the specific functions of POE family members in progression of pollen tube growth (PTG) remain uncharacterized. We identified 45 PbrPOE genes in the pear (Pyrus bretschneideri) genome, clustered into seven subclasses. PbrPOE genes contained 1 to 11 exons and 0 to 10 introns, with exon/intron structure mostly conserved within each subclass. Whole-genome duplication has mainly contributed to the duplication pattern of PbrPOE genes in pear. Expression profiles of 45 PbrPOE genes in 12 different pear tissues revealed that six PbrPOE genes (PbrPOE6, 12, 21, 29, 35 and 41) of subclass B were highly expressed during the growth of the pear pollen tube in vitro. PbrPOE21 was selected for further functional analysis on the basis of its high and differential expression pattern in pollen. Antisense oligodeoxynucleotide assays demonstrated that PTG was augmented in vitro when PbrPOE21 expression was significantly inhibited. Moreover, pollen tube length in vitro was reduced when PbrPOE21 was transitorily over-expressed using particle bombardment technology. Exogenous PbrPOE21 recombinant protein inhibited PTG in vitro at an optimum concentration of 1.8 µM. PbrPOE21 also affected reactive oxygen species content in the pear pollen tube apex. We suggest that PbrPOE21 inhibits PTG in vitro by altering apical reactive oxygen species content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

POE:

Pollen Olea europaea I

as-ODN:

Antisense oligodeoxynucleotide

ROS:

Reactive oxygen species

SI:

Self-incompatibility

PTG:

Pollen tube growth

References

  • Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423

    Article  CAS  PubMed  Google Scholar 

  • Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G et al (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batanero E, Gonzalez De La Peña MA, Villalba M, Monsalve RI, Martin-Esteban M, Rodríguez R (1996) Isolation, cDNA cloning and expression of Lig v 1, the major allergen from privet pollen. Clin Exp Allergy 26:1401–1410

    Article  CAS  PubMed  Google Scholar 

  • Batanero E, Barral P, Villalba M, Rodriguez R (2002) Sensitization of mice with olive pollen allergen Ole e 1 induces a Th2 response. Int Arch Allergy Immunol 127:269–275

    Article  CAS  PubMed  Google Scholar 

  • Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, Zheng X, Wang JY, Lee MM, Benfey P (2012) A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet 8:e1002446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho L, Rui M (2003) Endo/exocytosis in the pollen tube apex is differentially regulated by Ca2+ and GTPases. J Exp Bot 54:83–92

    Article  CAS  PubMed  Google Scholar 

  • Chae K, Lord EM (2011) Pollen tube growth and guidance: roles of small, secreted proteins. Ann Bot 108:627–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae K, Kieslich CA, Morikis D, Kim SC, Lord EM (2009) A gain-of-function mutation of Arabidopsis lipid transfer protein 5 disturbs pollen tube tip growth and fertilization. Plant Cell 21:3902–3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang P, de Graaf BHJ, Zhang H, Jiao H, Tang C, Zhang S, Wu J (2018) Phosphatidic acid counteracts S-RNase signaling in pollen by stabilizing the actin cytoskeleton. Plant Cell 30:1023–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung AY, Wu H (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  CAS  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Dios AJ, Castro AJ, Olmedilla A, Fernández MC, Rodríguez R, Villalba M, Rodríguez-García MI (1999) The major olive pollen allergen (Ole e I) shows both gametophytic and sporophytic expression during anther development, and its synthesis and storage takes place in the RER. J Cell Sci 3:2501–2509

    Google Scholar 

  • de Dios-Alché J, Mrani-Alaoui M, Castro AJ, Rodríguez-García MI (2004) Ole e 1, the major allergen from olive (Olea europaea L.) pollen, increases its expression and is released to the culture medium during in vitro germination. Plant Cell Physiol 45:1149–1157

    Article  PubMed  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    Article  CAS  PubMed  Google Scholar 

  • Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fayant P, Girlanda O, Chebli Y, Aubin CE, Villemure I, Geitmann A (2010) Finite element model of polar growth in pollen tubes. Plant Cell 22:2579–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:222–230

    Article  CAS  Google Scholar 

  • Friedl-Hajek R, Radauer C, O'Riordain G, Hoffmann-Sommergruber K, Breiteneder H (1999) New Bet v 1 isoforms including a naturally occurring truncated form of the protein derived from Austrian birch pollen. Mol Immunol 36:639–645

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Wu G, Yang Z (2001) ROP GTPase-dependent dynamics of tip-localized F-Actin controls tip growth in pollen tubes. J Cell Biol 152:1019–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galli SJ, Tsai M (2012) IgE and mast cells in allergic disease. Nat Med 18:693–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Fei C, Dong J, Gu L, Wang Y (2014) Arabidopsis CNGC18 is a Ca2+-permeable channel. Mol Plant 7:739–743

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Gu L, Wang H, Fei C, Wang Y (2016) Cyclic nucleotide-gated channel 18 is an essential Ca 2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proc Natl Acad Sci USA 113:3096–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu M, Luo X, Ruan H, García-Valencia LE, Zhong S, Hou S, Huang Q, Lai L, Moura DS, Gu H, Dong J, Wu H, Dresselhaus T, Xiao J, Cheung AY, Qu L (2017) Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358:1596–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Z, Cheung AY, Qu L (2018) Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface. New Phytol 222:687–693

    Article  Google Scholar 

  • Gong S, Huang G, Sun X, Li P, Zhao L, Zhang D, Li X (2012) GhAGP31, a cotton non-classical arabinogalactan protein, is involved in response to cold stress during early seedling development. Plant Biol (Stuttg) 14:447–457

    Article  CAS  Google Scholar 

  • González EM, Villalba M, Quiralte J, Batanero E, Roncal F, Albar JP, Rodríguez R (2006) Analysis of IgE and IgG B-cell immunodominant regions of Ole e 1, the main allergen from olive pollen. Mol Immunol 43:570–578

    Article  PubMed  CAS  Google Scholar 

  • Guan Y, Guo J, Li H, Yang Z (2013) Signaling in pollen tube growth: crosstalk, feedback, and missing links. Mol Plant 6:1053–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson DD, Hamilton DA, Travis JL, Bashe DM, Mascarenhas JP (1989) Characterization of a pollen-specific cDNA clone from Zea mays and its expression. Plant Cell 1:173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepler PK, Winship LJ (2010) Calcium at the cell wall-cytoplast interface. J Integr Plant Biol 52:147–160

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Liu B, Liu L, Liu C, Xu L, Ruan Y (2014) Epigenetic control of Pollen Ole e 1 allergen and extensin family gene expression in Arabidopsis thaliana. Acta Physiol Plant 36:2203–2209

    Article  CAS  Google Scholar 

  • Hu B, Jin J, Guo A, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  • Jiang SY, Jasmin PX, Ting YY, Ramachandran S (2005) Genome-wide identification and molecular characterization of Ole_e_I, Allerg_1 and Allerg_2 domain-containing pollen-allergen-like genes in Oryza sativa. DNA Res 12:167–179

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Liu Y, Xia E, Gao L (2013) Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Physiol 161:1844–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao H, Liu Q, Zhang H, Qi K, Liu Z, Wang P, Wu J, Zhang S (2019) PbrPCCP1 mediates the PbrTTS1 signaling to control pollen tube growth in pear. Plant Sci 289:110244

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Quesada MJ, Traverso JÁ, Alché Jde D (2016) NADPH oxidase-dependent superoxide production in plant reproductive tissues. Front Plant Sci 7:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Quesada MJ, Traverso JA, Potocký M, Žárský V, Alché JD (2019) Generation of superoxide by OeRbohH, a NADPH oxidase activity during olive (Olea europaea L.) pollen development and germination. Front Plant Sci 10:1149

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaothien P, Ok SH, Shuai B, Wengier D, Cotter R, Kelley D, Kiriakopolos S, Muschietti J, McCormick S (2005) Kinase partner protein interacts with the LePRK1 and LePRK2 receptor kinases and plays a role in polarized pollen tube growth. Plant J 42:492–503

    Article  CAS  PubMed  Google Scholar 

  • Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E (2014) Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26:1069–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Zhang D, Jung KH (2019) Molecular basis of pollen germination in cereals. Trends Plant Sci 24:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Kroeger JH, Geitmann A, Grant M (2008) Model for calcium dependent oscillatory growth in pollen tubes. J Theor Biol 253:363–374

    Article  CAS  PubMed  Google Scholar 

  • Larsen BT, Bubolz AH, Mendoza SA, Pritchard KA, Gutterman DD (2009) Bradykinin-induced dilation of human coronary arterioles requires NADPH oxidase-derived reactive oxygen species. Arterioscler Thromb Vasc Biol 29:739–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassig R, Gutermuth T, Bey TD, Kai RK, Romeis T (2014) Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J 78:94–106

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260

    Article  CAS  PubMed  Google Scholar 

  • Li W, Meng D, Gu Z, Yang Q, Li T (2018) Apple S -RNase triggers inhibition of tRNA aminoacylation by interacting with a soluble inorganic pyrophosphatase in growing self-pollen tubes in vitro. New Phytol 218:579–593

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Dong H, Zhang F, Qiu L, Wang F, Cao J, Huang L (2014) BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris. Ann Bot 113:777–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Yi Chuan 25:317–321

    PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Marzec M, Szarejko I, Melzer M (2015) Arabinogalactan proteins are involved in root hair development in barley. J Exp Bot 66:1245–1257

    Article  CAS  PubMed  Google Scholar 

  • Möbs C, Ipsen H, Mayer L, Slotosch C, Petersen A, Würtzen PA, Hertl M, Pfützner W (2012) Birch pollen immunotherapy results in long-term loss of Bet v 1–specific TH2 responses, transient TR1 activation, and synthesis of IgE-blocking antibodies. J Allergy Clin Immunol 130:1108–1116

    Article  PubMed  CAS  Google Scholar 

  • Müller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Leubner-Metzger G (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150:1855–1865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muschietti J, Dircks L, Vancanneyt G, McCormick S (1994) LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. Plant J 6:321–338

    Article  CAS  PubMed  Google Scholar 

  • Palomares O, Swoboda I, Villalba M, Balic N, Spitzauer S, Rodriguez R, Valenta R (2006) The major allergen of Olive Pollen Ole e 1 is a diagnostic marker for sensitization to Oleaceae. Int Arch Allergy Immunol 141:110–118

    Article  CAS  PubMed  Google Scholar 

  • Potocký M, Jones MA, Bezvoda R, Smirnoff N, Žárský V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 146:742–751

    Article  CAS  Google Scholar 

  • Qiao X, Li Q, Yin H, Qi K, Li L, Wang R, Zhang S, Paterson A (2019) Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol 20:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Qu L, Li L, Lan Z, Dresselhaus T (2015) Peptide signalling during the pollen tube journey and double fertilization. J Exp Bot 66:5139–5150

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez R, Villalba M, Batanero E, González EM, MonsalveR HS, Tejera ML, Ledesma A (2002) Allergenic diversity of the olive pollen. Allergy 71:6–16

    Article  Google Scholar 

  • Rong D, Luo N, Mollet JC, Liu X, Yang Z (2016) Salicylic acid regulates pollen tip growth through an NPR3/NPR4-independent pathway. Mol Plant 9:1478–1491

    Article  CAS  PubMed  Google Scholar 

  • Ruan Y (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67

    Article  CAS  PubMed  Google Scholar 

  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:529

    Article  Google Scholar 

  • Sauter M (2015) Phytosulfokine peptide signaling. J Exp Bot 66:5161–5169

    Article  CAS  PubMed  Google Scholar 

  • Shi D, Tang C, Wang R, Gu C, Wu X, Hu S, Jiao J, Zhang S (2017) Transcriptome and phytohormone analysis reveals a comprehensive phytohormone and pathogen defence response in pear self-/cross-pollination. Plant Cell Rep 36:1785–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova AV, Matveyeva NP, Yermakov IP (2014) Reactive oxygen species are involved in regulation of pollen wall cytomechanics. Plant Biol 16:252–257

    Article  CAS  PubMed  Google Scholar 

  • Speranza A, Crinelli R, Scoccianti V, Geitmann A (2011) Reactive oxygen species are involved in pollen tube initiation in kiwifruit. Plant Biol (Stuttg) 14:64–76

    Google Scholar 

  • Steinhorst L, Kudla JR (2013) Calcium—a central regulator of pollen germination and tube growth. Biochim Biophys Acta 1833:1573–1581

    Article  CAS  PubMed  Google Scholar 

  • Stührwohldt N, Dahlke RI, Kutschmar A, Peng X, Sauter M (2014) Phytosulfokine peptide signaling controls pollen tube growth and funicular pollen tube guidance in Arabidopsis thaliana. Physiol Plant 153:643–653

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Ezcurra I, Muschietti J, McCormick S (2002) A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 14:2277–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatarinova TV, Alexandrov NN, Bouck JB, Feldmann KA (2010) GC3 biology in corn, rice, sorghum and other grasses. BMC Genom 11:308

    Article  CAS  Google Scholar 

  • van Hengel AJ, Roberts K (2003) AtAGP30, an arabinogalactan-protein in the cell walls of the primary root, plays a role in root regeneration and seed germination. Plant J 36:256–270

    Article  PubMed  CAS  Google Scholar 

  • Varasteh AR, Sankian M, Midoro-Horiuti T, Moghadam M, Shakeri MT, Brooks EG, Goldblum RM, Chapman MD, Pomés A (2012) Molecular cloning and expression of Cro s 1: an occupational allergen from saffron pollen (Crocus sativus). Rep Biochem Mol Biol 1:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vasicek O, Lojek A, Jancinova V, Nosal R, Ciz M (2014) Role of histamine receptors in the effects of histamine on the production of reactive oxygen species by whole blood phagocytes. Life Sci 100:67–72

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Xu G, Jiang X, Chen G, Wu J, Wu H, Zhang S (2009) S-RNase triggers mitochondrial alteration and DNA degradation in the incompatible pollen tube of Pyrus pyrifolia in vitro. Plant J 57:220–229

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wu J, Xu G, Gao Y, Chen G, Wu J, Wu H, Zhang S (2010a) S-RNase disrupts tip-localized reactive oxygen species and induces nuclear DNA degradation in incompatible pollen tubes of Pyrus pyrifolia. J Cell Sci 123:4301–4309

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Tse YC, Law AH, Sun S, Sun Y, Xu Z, Hillmer S, Robinson DG, Jiang L (2010b) Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant J 61:826–838

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Han S, Siao W, Song C, Xiang Y, Wu X, Cheng P, Li H, Jásik J, Mičieta K, Turňa J, Voigt B, Baluška F, Liu J, Wang Y, Zhao H (2015) Arabidopsis synaptotagmin 2 participates in pollen germination and tube growth and is delivered to plasma membrane via conventional secretion. Mol Plant 8:1737–1750

    Article  PubMed  CAS  Google Scholar 

  • Woo CH, Yoo MH, You HJ, Cho SH, Mun YC, Seong CM, Kim JH (2003) Transepithelial migration of neutrophils in response to leukotriene B4 is mediated by a reactive oxygen species-extracellular signal-regulated kinase-linked cascade. J Immunol 170:6273–6279

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wudick MM, Feijó JA (2014) At the intersection: merging Ca2+ and ROS signaling pathways in pollen. Mol Plant 7:1595–1597

    Article  CAS  PubMed  Google Scholar 

  • Wudick MM, Portes MT, Michard E, Rosas-Santiago P, Lizzio MA, Nunes CO, Campos C, Santa Cruz Damineli D, Carvalho JC, Lima PT, Pantoja O, Feijó JA (2018) CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca2+ homeostasis. Science 360:533–536

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Gu C (2019) Self-incompatibility in pear. In: Korban SS (ed) The pear genome compendium of plant genomes. Springer Nature, Switzerland, pp 179–200

    Google Scholar 

  • Zhang Y, McCormick S (2010) The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth. Sex Plant Reprod 23:87–93

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wu L, Fan W, Zhang X, Jia H, Li Y, Yin Y, Hu J, Lu M (2015) Proteomic analysis and candidate allergenic proteins in Populus deltoids CL."2KEN8" mature pollen. Front Plant Sci 6:548

    PubMed  PubMed Central  Google Scholar 

  • Zhou H, Yin H, Chen J, Liu X, Zhang S (2015) Gene-expression profile of developing pollen tube of Pyrus bretschneideri. Gene Expr Patterns 20:11–21

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank Huijun Jiao for bioinformatics guidance; Dongqing Shi for qPCR and protein instructions; and Luting Jia for providing selfless assistance. In addition, we still wish to express our thanks to Peng Wang and Zhihua Guo for English language correction. This study was supported by the National Key Research and Development Program of China (2018YFD1000107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoling Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, M., Xu, L., Tang, C. et al. PbrPOE21 inhibits pear pollen tube growth in vitro by altering apical reactive oxygen species content. Planta 252, 43 (2020). https://doi.org/10.1007/s00425-020-03446-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03446-7

Keywords

Navigation