Skip to main content
Log in

CcBLH6, a bell-like homeodomain-containing transcription factor, regulates the fruit lignification pattern

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

CcBLH6 is a bell-like homeodomain-containing transcription factor that plays an important role of lignin biosynthesis in the control of fruit lignification pattern in Camellia chekiangoleosa.

Abstract

The fruit of Camellia chekiangoleosa has a unique lignification pattern that features with a thick pericarp containing a low level of lignification. Yet the fruit lignification pattern and the regulatory network of responsible gene transcription are poorly understood. Here, we characterized a bell-like homeodomain-containing (BLH) transcription factor from C. chekiangoleosa, CcBLH6, in the control of fruit lignification. CcBLH6 expression was highly correlated with the unique lignification pattern during fruit development. The ectopic expression of CcBLH6 promoted the lignification process of stem and root in Arabidopsis. We found that expression of genes related to lignin biosynthesis and its transcriptional regulation was altered in transgenic lines. In a Camellia callus-transformation system, overexpression of CcBLH6 greatly enhanced the expression of genes related to lignin biosynthesis and its transcriptional regulation was altered in transgenic lines. In the callus-transformation system, overexpression of CcBLH6 greatly enhanced the lignification of parenchymal cells, and the regulation of several genes involved in lignin accumulation was largely consistent between Arabidopsis and Camellia. Our study reveals a positive role of CcBLH6 in the regulation of lignin biosynthesis during fruit lignification in Camellia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BLH:

BEL1-Like Homeodomain

KNOX:

Knotted-Like Homeodomain

TALE:

Three Amino-acid Loop Extension

PAL:

Phenylalanine Ammonia-Lyase

C4H:

Cinnamate 4-Hydroxylase

LAC:

Laccase

References

  • Arnaud N, Pautot V (2014) Ring the BELL and tie the KNOX: roles for TALEs in gynoecium development. Front Plant Sci 5:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Barciela J, Vieitez AM (1993) Anatomical sequence and morphometric analysis during somatic embryogenesis on cultured cotyledon explants of Camellia japonica L. Ann Bot 71(5):395–404

    Article  Google Scholar 

  • Bencivenga S, Serrano-Mislata A, Bush M, Fox S, Sablowski R (2016) Control of oriented tissue growth through repression of organ boundary genes promotes stem morphogenesis. Dev cell 39(2):198–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54(1):519–546

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Dardick C, Callahan AM (2014) Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies. Front Plant Sci 5:284–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Dardick C, Callahan AM, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dinneny JR, Yanofsky MF (2005) Drawing lines and borders: how the dehiscent fruit of Arabidopsis is patterned. BioEssays 27(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Fan ZQ, Li JY, Li XL, Wu B, Wang JY, Liu ZC, Yin HF (2015) Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea. Sci Rep 5:9729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrandiz C (2002) Regulation of fruit dehiscence in Arabidopsis. J Exp Bot 53(377):2031–2038

    Article  CAS  PubMed  Google Scholar 

  • Ferrandiz C, Fourquin C (2014) Role of the FUL-SHP network in the evolution of fruit morphology and function. J Exp Bot 65(16):4505–4513

    Article  CAS  PubMed  Google Scholar 

  • Ferrandiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289(5478):436–438

    Article  CAS  PubMed  Google Scholar 

  • Ferrándiz C, Fourquin C (2014) Role of the FUL-SHP network in the evolution of fruit morphology and function. J Exp Bot 65(16):4505–4513

    Article  PubMed  CAS  Google Scholar 

  • Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9:e0152

    Article  PubMed  PubMed Central  Google Scholar 

  • Garceau DC, Batson MK, Pan IL (2017) Variations on a theme in fruit development: the PLE lineage of MADS-box genes in tomato (TAGL1) and other species. Planta 246(2):313–321

    Article  CAS  PubMed  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5(10):1439–1451

    Article  PubMed  PubMed Central  Google Scholar 

  • Girin T, Sorefan K, Østergaard L (2009) Meristematic sculpting in fruit development. J Exp Bot 60(5):1493–1502

    Article  CAS  PubMed  Google Scholar 

  • Hamant O, Pautot V (2010) Plant development: a TALE story. Cr Biol 333(4):371–381

    Article  CAS  Google Scholar 

  • Hay A, Tsiantis M (2009) A KNOX familyn TALE. Curr Opin Plant Biol 12(5):593–598

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Kondo M, Aya K, Miyao A, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M (2013) Identification of transcription factors involved in rice secondary cell wall formation. Plant Cell Physiol 54(11):1791–1802

    Article  CAS  PubMed  Google Scholar 

  • Hu ZK, Lyu T, Yan C, Wang YP, Yin HF (2020) Identification of alternatively spliced gene isoforms and novel noncoding RNAs by single-molecule long-read sequencing in Camellia. RNA Biol 17(7):966–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kourmpetli S, Drea S (2013) The fruit, the whole fruit, and everything about the fruit. J Exp Bot 65(16):4491–4503

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Doerks T, Bork P (2009) SMART 6: Recent updates and new developments. Nucleic Acids Res 37(S1):D229–D232

    Article  CAS  PubMed  Google Scholar 

  • Li MT, Cheng CX, Zhang XF, Zhou SP, Wang CH, Ma CH, Yang SL (2019) PpNAC187 enhances lignin synthesis in ‘Whangkeumbae’ pear (Pyrus pyrifolia) ‘Hard-End’ fruit. Molecules 24(23):4338

    Article  CAS  PubMed Central  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404(6779):766–770

    Article  CAS  PubMed  Google Scholar 

  • Liu YY, Douglas CJ (2015) A role for OVATE FAMILY PROTEIN1 (OFP1) and OFP4 in a BLH6-KNAT7 multi-protein complex regulating secondary cell wall formation in Arabidopsis thaliana. Plant Signal Behav 10(7):e1033126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu YY, You SJ, Taylor-Teeples M, Li WL, Schuetz M, Brady SM, Douglas CJ (2014) BEL1-LIKE HOMEODOMAIN6 and KNOTTED ARABIDOPSIS THALIANA7 interact and regulate secondary cell wall formation via repression of REVOLUTA. Plant Cell 26(12):4843–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu QQ, Luo L, Zheng LP (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19(2):335

    Article  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2002) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Lyu T, Fan ZQ, Yang W, Yan C, Hu ZK, Li XL, Li JY, Yin HF (2019) CjPLE, a PLENA-like gene, is a potential regulator of fruit development via activating the FRUITFUL homolog in Camellia. J Exp Bot 70(12):3153–3164

    Article  PubMed  CAS  Google Scholar 

  • Pabón-Mora N, Wong GK, Ambrose BA (2014) Evolution of fruit development genes in flowering plants. Front Plant Sci 5:300

    PubMed  PubMed Central  Google Scholar 

  • Rao XL, Dixon RA (2018) Current models for transcriptional regulation of secondary cell wall biosynthesis in grasses. Front Plant Sci 9:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Roeder AHK, Ferrandiz C, Yanofsky MF (2003) The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol 13(18):1630–1635

    Article  CAS  PubMed  Google Scholar 

  • Seymour GB, Østergaard L, Chapman NH, Knapp S, Martin C (2013) Fruit development and ripening. Annu Rev Plant Biol 64:219–241

    Article  CAS  PubMed  Google Scholar 

  • Spjut RW (1994) A systematic treatment of fruit types. New York Botanical Garden, New York, p 182

    Google Scholar 

  • Wang L, Li J, Zhao J, He CY (2015) Evolutionary developmental genetics of fruit morphological variation within the Solanaceae. Front Plant Sci 6:248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JP, Matthews ML, Williams CM, Shi R, Yang CM, Tunlaya-Anukit S, Chen HC, Li QZ, Liu J, Lin CY, Naik P, Sun YH, Loziuk PL, Yeh TF, Kim H, Gjersing E, Shollenberger T, Shuford CM, Song J, Miller Z, Huang YY, Edmunds CW, Liu BG, Sun Y, Lin YCJ, Li W, Chen H, Peszlen I, Ducoste JJ, Ralph J, Chang HM, Muddiman DC, Davis MF, Smith C, Isik F, Sederoff R, Chiang VL (2018) Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nat Commun 9(1):1579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weng JK, Akiyama T, Bonawitz ND, Li X, Ralph J, Chapple C (2010) Convergent evolution of syringyl lignin biosynthesis via distinct pathways in the lycophyte Selaginella and flowering Plants. Plant Cell 22(4):1033–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Zhang J, Tschaplinski TJ, Tuskan GA, Chen JG, Muchero W (2018) Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Front Plant Sci 9:1427

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue C, Yao JL, Qin MF, Zhang MY, Allan AC, Wang DF, Wu J (2018) PbrmiR397a regulates lignification during stone cell development in pear fruit. Plant Biotechnol J 17(1):103–117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xue C, Yao JL, Xue YS, Su GQ, Wang L, Lin LK, Allan AC, Zhang SL, Wu J (2019) PbrMYB169 positively regulates lignification of stone cells in pear fruit. J Exp Bot 70(6):1801–1814

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Lin P, Lyu T, Hu ZK, Fan ZQ, Li XL, Yao XH, Li JY, Yin HF (2018) Unraveling the roles of regulatory genes during domestication of cultivated Camellia: evidence and insights from comparative and evolutionary genomics. Genes 9(10):488

    Article  PubMed Central  CAS  Google Scholar 

  • Yoon J, Cho LH, Kim SL, Choi H, Koh HJ, An G (2014) The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. Plant J 79(5):717–728

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ge H, Zang C, Li X, Grierson D, Chen KS, Yin XR (2016) EjODO1, a MYB transcription factor, regulating lignin biosynthesis in developing loquat (Eriobotrya japonica) fruit. Front Plant Sci 7:1360

    PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 6(14):227–233

    Article  CAS  Google Scholar 

  • Zhong RQ, Ye ZH (2015) Secondary cell walls: Biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol 56(2):195–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Haiping Yu from China National Rice Research Institute (Hangzhou, China) for technical supports on the confocal microscopy analysis. This work was supported by National Key R&D Program of China (2019YFD1000400 and 2019YFD1001602), Nonprofit Research Projects (CAFYBB2018QA005, CAFYBB2018QA006) of Chinese Academy of Forestry, and National Science Foundation of China (31870578).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohua Yao or Hengfu Yin.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

425_2021_3610_MOESM1_ESM.jpg

Supplementary Fig. S1 Overexpression of CcBLH6 in Arabidopsis causes pleiotropic effects on development and growth. a Comparison of overall morphology of WT and transgenic lines. Bar = 1 cm. b Validation of the Arabidopsis transgenic lines by the PCR amplification using construct-specific primers. The red arrow indicates the specific PCR product from the construct. c Four lines that displayed overexpression of CcBLH6 are identified by the QRT-PCR analysis (JPG 1382 KB)

425_2021_3610_MOESM2_ESM.jpg

Supplementary Fig. S2 Overexpression of CcBLH6 promoted the cell lignification in roots of transgenic lines. The histological analysis of root morphology in WT (a), and transgenic lines (b, c). The lignified areas are indicated by the red staining. d The areas of three individuals of transgenic lines from the T2 generation are compared based on the image analysis of cross sections. Bars = 100 µm. Error bars indicate ±SD. Significance tests are performed by one-way ANOVA. Different letters indicate significant variation (P<0.05) (JPG 1676 KB)

425_2021_3610_MOESM3_ESM.jpg

Supplementary Fig. S3 Validation of transformed callus lines in Camellia. a Six independent callus lines are used for PCR validation by using construct-specific primers. The red arrow indicates the construct-specific PCR product. b Three lines are used for QRT-PCR analysis for CcBLH6 expression levels. All quantifications are performed for three times. Significance tests are performed by (P<0.05) and indicated by different letters. CB0-CB5 are independent transgenic calli lines of Camellia; and Ca1-Ca3 are three control calli lines (JPG 1785 KB)

Supplementary file4 (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Hu, Z., Nie, Z. et al. CcBLH6, a bell-like homeodomain-containing transcription factor, regulates the fruit lignification pattern. Planta 253, 90 (2021). https://doi.org/10.1007/s00425-021-03610-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03610-7

Keywords

Navigation