Skip to main content
Log in

Prevalence and function of Heschl’s gyrus morphotypes in musicians

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Morphological variations of the first transverse Heschl’s gyrus (HG) in the human auditory cortex (AC) are common, yet little is known about their functional implication. We investigated individual morphology and function of HG variations in the AC of 41 musicians, using structural and functional magnetic resonance imaging (fMRI) as well as magnetoencephalography (MEG). Four main morphotypes of HG were (i) single HG, (ii) common stem duplication (CSD), (iii) complete posterior duplication (CPD), and (iv) multiple duplications (MD). The vast majority of musicians (90%) exhibited HG multiplications (type ii–iv) in either one (39%) or both (51%) hemispheres. In 27% of musicians, MD with up to four gyri were found. To probe the functional contribution of HG multiplications to auditory processing we performed fMRI and MEG with auditory stimulation using analogous instrumental tone paradigms. Both methods pointed to the recruitment of all parts of HG during auditory stimulation, including multiplications if present. FMRI activations extended with the degree of HG gyrification. MEG source waveform patterns were distinct for the different types of HG: (i) hemispheres with single HG and (ii) CSD exhibited dominant N1 responses, whereas hemispheres with (iii) CPD and (iv) MD exhibited dominant P1 responses. N1 dipole amplitudes correlated with the localization of the first complete Heschl’s sulcus (cHS), designating the most posterior anatomical border of HG. P2 amplitudes were significantly higher in professional as compared to amateur musicians. The results suggest that HG multiplications occur much more frequently in musicians than in the general population and constitute a functional unit with HG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdul-Kareem IA, Sluming V (2008) Heschl gyrus and its included primary auditory cortex: structural MRI studies in healthy and diseased subjects. J Magn Reson Imaging 28(2):287–299. doi:10.1002/jmri.21445

    Article  PubMed  Google Scholar 

  • Auerbach S (1906) Beitrag zur Lokalisation des musikalischen Talentes im Gehirn und am Schädel. Arch Anatom Physiol 1906:197–230

    Google Scholar 

  • Bangert M, Schlaug G (2006) Specialization of the specialized in features of external human brain morphology. Eur J Neurosci 24(6):1832–1834. doi:10.1111/j.1460-9568.2006.05031.x

    Article  PubMed  Google Scholar 

  • Besson M, Faita F (1995) An event-related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians. J Exp Psychol Hum Percept Perform 21(6):1278

    Article  Google Scholar 

  • Blatow M, Nennig E, Durst A, Sartor K, Stippich C (2007) fMRI reflects functional connectivity of human somatosensory cortex. Neuroimage 37(3):927–936. doi:10.1016/j.neuroimage.2007.05.038

    Article  PubMed  Google Scholar 

  • Bonte M, Frost MA, Rutten S, Ley A, Formisano E, Goebel R (2013) Development from childhood to adulthood increases morphological and functional inter-individual variability in the right superior temporal cortex. Neuroimage 83:739–750. doi:10.1016/j.neuroimage.2013.07.017

    Article  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth.  

  • Brown RM, Zatorre RJ, Penhune VB (2015) Expert music performance: cognitive, neural, and developmental bases. Prog Brain Res 217:57–86. doi:10.1016/bs.pbr.2014.11.021

    Article  PubMed  Google Scholar 

  • Campain R, Minckler J (1976) A note on the gross configurations of the human auditory cortex. Brain Lang 3(2):318–323

    Article  CAS  PubMed  Google Scholar 

  • Da Costa S, van der Zwaag W, Marques JP, Frackowiak RS, Clarke S, Saenz M (2011) Human primary auditory cortex follows the shape of Heschl’s gyrus. J Neurosci 31(40):14067–14075. doi:10.1523/JNEUROSCI.2000-11.2011

    Article  PubMed  Google Scholar 

  • De Martino F, Moerel M, Xu J, van de Moortele PF, Ugurbil K, Goebel R, Yacoub E, Formisano E (2015) High-resolution mapping of myeloarchitecture in vivo: localization of auditory areas in the human brain. Cereb Cortex 25(10):3394–3405. doi:10.1093/cercor/bhu150

    Article  PubMed  Google Scholar 

  • Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N (2012) In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci 32(46):16095. doi:10.1523/Jneurosci.1712-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eickhoff SB, Heim S, Zilles K, Amunts K (2006) Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32(2):570–582. doi:10.1016/j.neuroimage.2006.04.204

    Article  PubMed  Google Scholar 

  • Emmorey K, Allen JS, Bruss J, Schenker N, Damasio H (2003) A morphometric analysis of auditory brain regions in congenitally deaf adults. Proc Natl Acad Sci USA 100(17):10049–10054. doi:10.1073/pnas.1730169100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40(4):859–869

    Article  CAS  PubMed  Google Scholar 

  • Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190(3):597–610. doi:10.1002/cne.901900312

    Article  CAS  PubMed  Google Scholar 

  • Galaburda AM, LeMay M, Kemper TL, Geschwind N (1978) Right–left asymmetrics in the brain. Science 199(4331):852–856

    Article  CAS  PubMed  Google Scholar 

  • Gaser C, Schlaug G (2003) Brain structures differ between musicians and non-musicians. J Neurosci 23(27):9240–9245

    CAS  PubMed  Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain: left–right asymmetries in temporal speech region. Science 161(3837):186–187

    Article  CAS  PubMed  Google Scholar 

  • Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31(32):11597–11616. doi:10.1523/JNEUROSCI.2180-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature. doi:10.1038/nature18933

    PubMed Central  Google Scholar 

  • Golestani N, Pallier C (2007) Anatomical correlates of foreign speech sound production. Cereb Cortex 17(4):929–934. doi:10.1093/cercor/bhl003

    Article  PubMed  Google Scholar 

  • Golestani N, Price CJ, Scott SK (2011) Born with an ear for dialects? Structural plasticity in the expert phonetician brain. J Neurosci 31(11):4213–4220. doi:10.1523/JNEUROSCI.3891-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon E (1998) Introduction to research and the psychology of music. Boydell & Brewer Ltd, Woodbridge

    Google Scholar 

  • Griffiths TD (2003) Functional imaging of pitch analysis. Ann N Y Acad Sci 999:40–49

    Article  PubMed  Google Scholar 

  • Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441(3):197–222

    Article  CAS  PubMed  Google Scholar 

  • Hall DA, Johnsrude IS, Haggard MP, Palmer AR, Akeroyd MA, Summerfield AQ (2002) Spectral and temporal processing in human auditory cortex. Cereb Cortex 12(2):140–149

    Article  PubMed  Google Scholar 

  • Hämäläinen MS, Sarvas J (1987) Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields. Phys Med Biol 32(1):91–97

    Article  PubMed  Google Scholar 

  • Heschl RL (1878) Über die vordere quere Schläfenwindung des menschlichen Grosshirns. Braumüller, Wien

    Google Scholar 

  • Humphries C, Liebenthal E, Binder JR (2010) Tonotopic organization of human auditory cortex. Neuroimage 50(3):1202–1211. doi:10.1016/j.neuroimage.2010.01.046

    Article  PubMed  PubMed Central  Google Scholar 

  • Jäncke L, Mirzazade S, Shah NJ (1999) Attention modulates activity in the primary and the secondary auditory cortex: a functional magnetic resonance imaging study in human subjects. Neurosci Lett 266(2):125–128

    Article  PubMed  Google Scholar 

  • Jongsma ML, Eichele T, Quian Quiroga R, Jenks KM, Desain P, Honing H, Van Rijn CM (2005) Expectancy effects on omission evoked potentials in musicians and non-musicians. Psychophysiology 42(2):191–201. doi:10.1111/j.1469-8986.2005.00269.x

    Article  PubMed  Google Scholar 

  • Kim JJ, Crespo-Facorro B, Andreasen NC, O’Leary DS, Zhang B, Harris G, Magnotta VA (2000) An MRI-based parcellation method for the temporal lobe. Neuroimage 11(4):271–288. doi:10.1006/nimg.2000.0543

    Article  PubMed  Google Scholar 

  • Koelsch S, Gunter TC, v Cramon DY, Zysset S, Lohmann G, Friederici AD (2002) Bach speaks: a cortical “language-network” serves the processing of music. Neuroimage 17(2):956–966. doi:10.1006/nimg.2002.1154

    Article  PubMed  Google Scholar 

  • Koelsch S, Fritz T, Schulze K, Alsop D, Schlaug G (2005) Adults and children processing music: an fMRI study. Neuroimage 25(4):1068–1076. doi:10.1016/j.neuroimage.2004.12.050

    Article  PubMed  Google Scholar 

  • Kuriki S, Kanda S, Hirata Y (2006) Effects of musical experience on different components of MEG responses elicited by sequential piano-tones and chords. J Neurosci 26(15):4046–4053. doi:10.1523/JNEUROSCI.3907-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Langers DR, van Dijk P (2012) Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. Cereb Cortex 22(9):2024–2038. doi:10.1093/cercor/bhr282

    Article  PubMed  Google Scholar 

  • Leonard CM, Puranik C, Kuldau JM, Lombardino LJ (1998) Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: where is it? Cereb Cortex 8(5):397–406

    Article  CAS  PubMed  Google Scholar 

  • Liebenthal E, Desai R, Ellingson MM, Ramachandran B, Desai A, Binder JR (2010) Specialization along the left superior temporal sulcus for auditory categorization. Cereb Cortex 20(12):2958–2970. doi:10.1093/cercor/bhq045

    Article  PubMed  PubMed Central  Google Scholar 

  • Liegeois-Chauvel C, Musolino A, Badier JM, Marquis P, Chauvel P (1994) Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol 92(3):204–214

    Article  CAS  PubMed  Google Scholar 

  • Liem F, Zaehle T, Burkhard A, Jancke L, Meyer M (2012) Cortical thickness of supratemporal plane predicts auditory N1 amplitude. NeuroReport 23(17):1026–1030. doi:10.1097/WNR.0b013e32835abc5c

    Article  PubMed  Google Scholar 

  • Marie D, Jobard G, Crivello F, Perchey G, Petit L, Mellet E, Joliot M, Zago L, Mazoyer B, Tzourio-Mazoyer N (2015) Descriptive anatomy of Heschl’s gyri in 430 healthy volunteers, including 198 left-handers. Brain Struct Funct 220(2):729–743. doi:10.1007/s00429-013-0680-x

    Article  CAS  PubMed  Google Scholar 

  • Marie D, Maingault S, Crivello F, Mazoyer B, Tzourio-Mazoyer N (2016) Surface-based morphometry of cortical thickness and surface area associated with Heschl’s gyri duplications in 430 healthy volunteers. Front Hum Neurosci 10:69. doi:10.3389/fnhum.2016.00069

    Article  PubMed  PubMed Central  Google Scholar 

  • Moerel M, De Martino F, Formisano E (2012) Processing of natural sounds in human auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity. J Neurosci 32(41):14205–14216. doi:10.1523/JNEUROSCI.1388-12.2012

    Article  CAS  PubMed  Google Scholar 

  • Moerel M, De Martino F, Formisano E (2014) An anatomical and functional topography of human auditory cortical areas. Front Neurosci 8:225. doi:10.3389/fnins.2014.00225

    Article  PubMed  PubMed Central  Google Scholar 

  • Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13(4):684–701. doi:10.1006/nimg.2000.0715

    Article  CAS  PubMed  Google Scholar 

  • Musiek FE, Reeves AG (1990) Asymmetries of the auditory areas of the cerebrum. J Am Acad Audiol 1(4):240–245

    CAS  PubMed  Google Scholar 

  • Näätänen R (1990) The role of attention in auditory information-processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13(2):201–232

    Article  Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24(4):375–425

    Article  PubMed  Google Scholar 

  • Pantev C, Hoke M, Lutkenhoner B, Lehnertz K (1989) Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 246(4929):486–488

    Article  CAS  PubMed  Google Scholar 

  • Pantev C, Oostenveld R, Engelien A, Ross B, Roberts LE, Hoke M (1998) Increased auditory cortical representation in musicians. Nature 392(6678):811–814. doi:10.1038/33918

    Article  CAS  PubMed  Google Scholar 

  • Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36(4):767–776

    Article  CAS  PubMed  Google Scholar 

  • Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6(5):661–672

    Article  CAS  PubMed  Google Scholar 

  • Penhune VB, Cismaru R, Dorsaint-Pierre R, Petitto LA, Zatorre RJ (2003) The morphometry of auditory cortex in the congenitally deaf measured using MRI. Neuroimage 20(2):1215–1225. doi:10.1016/S1053-8119(03)00373-2

    Article  PubMed  Google Scholar 

  • Pfeifer RA (1920) Myelogenetisch-anatomische Untersuchungen über das kortikale Ende der Hörleitung. Abhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. In: Mathematisch-naturwissenschaftliche Klasse, vol Bd 37, No. 2

  • Picton T (2013) Hearing in time: evoked potential studies of temporal processing. Ear Hear 34(4):385–401. doi:10.1097/AUD.0b013e31827ada02

    Article  PubMed  Google Scholar 

  • Ponton C, Eggermont JJ, Khosla D, Kwong B, Don M (2002) Maturation of human central auditory system activity: separating auditory evoked potentials by dipole source modeling. Clin Neurophysiol 113(3):407–420

    Article  PubMed  Google Scholar 

  • Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3(4):313–329

    Article  CAS  PubMed  Google Scholar 

  • Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, Zilles K (2001) Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13(4):669–683. doi:10.1006/nimg.2000.0714

    Article  CAS  PubMed  Google Scholar 

  • Rojas DC, Teale P, Sheeder J, Simon J, Reite M (1997) Sex-specific expression of Heschl’s gyrus functional and structural abnormalities in paranoid schizophrenia. Am J Psychiatry 154(12):1655–1662. doi:10.1176/ajp.154.12.1655

    CAS  PubMed  Google Scholar 

  • Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32(1):11–22. doi:10.1088/0031-9155/32/1/004

    Article  CAS  PubMed  Google Scholar 

  • Schlaug G, Jancke L, Huang Y, Steinmetz H (1995) In vivo evidence of structural brain asymmetry in musicians. Science 267(5198):699–701

    Article  CAS  PubMed  Google Scholar 

  • Schneider P, Scherg M, Dosch HG, Specht HJ, Gutschalk A, Rupp A (2002) Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci 5(7):688–694. doi:10.1038/nn871

    Article  CAS  PubMed  Google Scholar 

  • Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, Dosch HG, Bleeck S, Stippich C, Rupp A (2005) Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nat Neurosci 8(9):1241–1247. doi:10.1038/nn1530

    Article  CAS  PubMed  Google Scholar 

  • Schneider P, Andermann M, Wengenroth M, Goebel R, Flor H, Rupp A, Diesch E (2009) Reduced volume of Heschl’s gyrus in tinnitus. Neuroimage 45(3):927–939. doi:10.1016/j.neuroimage.2008.12.045

    Article  PubMed  Google Scholar 

  • Seifritz E, Esposito F, Hennel F, Mustovic H, Neuhoff JG, Bilecen D, Tedeschi G, Scheffler K, Di Salle F (2002) Spatiotemporal pattern of neural processing in the human auditory cortex. Science 297(5587):1706–1708. doi:10.1126/science.1074355

    Article  CAS  PubMed  Google Scholar 

  • Seither-Preisler A, Parncutt R, Schneider P (2014) Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children. J Neurosci 34(33):10937–10949. doi:10.1523/JNEUROSCI.5315-13.2014

    Article  CAS  PubMed  Google Scholar 

  • Seppänen M, Hämäläinen J, Pesonen AK, Tervaniemi M (2012) Music training enhances rapid neural plasticity of n1 and p2 source activation for unattended sounds. Front Hum Neurosci 6:43. doi:10.3389/fnhum.2012.00043

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrallach B, Gross C, Bernhofs V, Engelmann D, Benner J, Gundert N, Blatow M, Wengenroth M, Seitz A, Brunner M, Seither S, Parncutt R, Schneider P, Seither-Preisler A (2016) Neural biomarkers for dyslexia, ADHD, and ADD in the auditory cortex of children. Front Neurosci 10:324. doi:10.3389/fnins.2016.00324

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahin A, Roberts LE, Pantev C, Trainor LJ, Ross B (2005) Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. NeuroReport 16(16):1781–1785

    Article  PubMed  Google Scholar 

  • Sharma A, Kraus N, McGee TJ, Nicol TG (1997) Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalogr Clin Neurophysiol 104(6):540–545

    Article  CAS  PubMed  Google Scholar 

  • Sigalovsky IS, Fischl B, Melcher JR (2006) Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences. Neuroimage 32(4):1524–1537. doi:10.1016/j.neuroimage.2006.05.023

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith KM, Mecoli MD, Altaye M, Komlos M, Maitra R, Eaton KP, Egelhoff JC, Holland SK (2011) Morphometric differences in the Heschl’s gyrus of hearing impaired and normal hearing infants. Cereb Cortex 21(5):991–998. doi:10.1093/cercor/bhq164

    Article  PubMed  Google Scholar 

  • Specht K, Willmes K, Shah NJ, Jancke L (2003) Assessment of reliability in functional imaging studies. J Magn Reson Imaging 17(4):463–471. doi:10.1002/jmri.10277

    Article  PubMed  Google Scholar 

  • Steinmetz H, Rademacher J, Huang YX, Hefter H, Zilles K, Thron A, Freund HJ (1989) Cerebral asymmetry: MR planimetry of the human planum temporale. J Comput Assist Tomogr 13(6):996–1005

    Article  CAS  PubMed  Google Scholar 

  • Steinschneider M, Liegeois-Chauvel C, Brugge JF (2011) Auditory evoked potentials and their utility in the assessment of complex sound processing. Audit Cortex 535–559. doi:10.1007/978-1-4419-0074-6_25

  • Stippich C, Blatow M, Durst A, Dreyhaupt J, Sartor K (2007) Global activation of primary motor cortex during voluntary movements in man. Neuroimage 34(3):1227–1237. doi:10.1016/j.neuroimage.2006.08.046

    Article  PubMed  Google Scholar 

  • Striem-Amit E, Hertz U, Amedi A (2011) Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding FMRI. PLoS One 6(3):e17832. doi:10.1371/journal.pone.0017832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahmasebi AM, Abolmaesumi P, Wild C, Johnsrude IS (2010) A validation framework for probabilistic maps using Heschl’s gyrus as a model. Neuroimage 50(2):532–544. doi:10.1016/j.neuroimage.2009.12.074

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Georg Thieme, Stuttgart

    Google Scholar 

  • Tervaniemi M, Castaneda A, Knoll M, Uther M (2006) Sound processing in amateur musicians and nonmusicians: event-related potential and behavioral indices. NeuroReport 17(11):1225–1228. doi:10.1097/01.wnr.0000230510.55596.8b

    Article  PubMed  Google Scholar 

  • Tremblay KL, Inoue K, McClannahan K, Ross B (2010) Repeated stimulus exposure alters the way sound is encoded in the human brain. PLoS One 5(4):e10283. doi:10.1371/journal.pone.0010283

    Article  PubMed  PubMed Central  Google Scholar 

  • Tremblay KL, Ross B, Inoue K, McClannahan K, Collet G (2014) Is the auditory evoked P2 response a biomarker of learning? Front Syst Neurosci 8:28. doi:10.3389/fnsys.2014.00028

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzourio-Mazoyer N, Marie D, Zago L, Jobard G, Perchey G, Leroux G, Mellet E, Joliot M, Crivello F, Petit L, Mazoyer B (2015) Heschl’s gyrification pattern is related to speech-listening hemispheric lateralization: FMRI investigation in 281 healthy volunteers. Brain Struct Funct 220(3):1585–1599. doi:10.1007/s00429-014-0746-4

    Article  CAS  PubMed  Google Scholar 

  • v. Economo C, Horn L (1930) Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede. Z Gesamte Neurol Psychiatr 130(1):678–757

    Article  Google Scholar 

  • Varèse E, Wen-Chung C (1966) The liberation of sound. Perspect New Music 5(1):11–19

    Article  Google Scholar 

  • Warrier C, Wong P, Penhune V, Zatorre R, Parrish T, Abrams D, Kraus N (2009) Relating structure to function: Heschl’s gyrus and acoustic processing. J Neurosci 29(1):61–69. doi:10.1523/JNEUROSCI.3489-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasserthal C, Brechmann A, Stadler J, Fischl B, Engel K (2014) Localizing the human primary auditory cortex in vivo using structural MRI. Neuroimage 93(Pt 2):237–251. doi:10.1016/j.neuroimage.2013.07.046

    Article  PubMed  Google Scholar 

  • Wengenroth M, Blatow M, Bendszus M, Schneider P (2010) Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome. PLoS One 5(8):e12326. doi:10.1371/journal.pone.0012326

    Article  PubMed  PubMed Central  Google Scholar 

  • Wengenroth M, Blatow M, Heinecke A, Reinhardt J, Stippich C, Hofmann E, Schneider P (2014) Increased volume and function of right auditory cortex as a marker for absolute pitch. Cereb Cortex 24(5):1127–1137. doi:10.1093/cercor/bhs391

    Article  PubMed  Google Scholar 

  • Westbury CF, Zatorre RJ, Evans AC (1999) Quantifying variability in the planum temporale: a probability map. Cereb Cortex 9(4):392–405

    Article  CAS  PubMed  Google Scholar 

  • White-Schwoch T, Woodruff Carr K, Anderson S, Strait DL, Kraus N (2013) Older adults benefit from music training early in life: biological evidence for long-term training-driven plasticity. J Neurosci 33(45):17667–17674. doi:10.1523/JNEUROSCI.2560-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woldorff MG, Hillyard SA (1991) Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalogr Clin Neurophysiol 79(3):170–191

    Article  CAS  PubMed  Google Scholar 

  • Wong PC, Warrier CM, Penhune VB, Roy AK, Sadehh A, Parrish TB, Zatorre RJ (2008) Volume of left Heschl’s gyrus and linguistic pitch learning. Cereb Cortex 18(4):828–836. doi:10.1093/cercor/bhm115

    Article  PubMed  Google Scholar 

  • Yoshiura T, Higano S, Rubio A, Shrier DA, Kwok WE, Iwanaga S, Numaguchi Y (2000) Heschl and superior temporal gyri: low signal intensity of the cortex on T2-weighted MR images of the normal brain. Radiology 214(1):217–221. doi:10.1148/radiology.214.1.r00ja17217

    Article  CAS  PubMed  Google Scholar 

  • Yousry TA, Fesl G, Buttner A, Noachtar S, Schmid UD (1997) Heschl’s gyrus—anatomic description and methods of identification on magnetic resonance imaging. Int J Neuroradiol 3(1):2–12

    Google Scholar 

  • Zatorre RJ (2013) Predispositions and plasticity in music and speech learning: neural correlates and implications. Science 342(6158):585–589. doi:10.1126/science.1238414

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ, Salimpoor VN (2013) From perception to pleasure: music and its neural substrates. Proc Natl Acad Sci USA 110(Suppl 2):10430–10437. doi:10.1073/pnas.1301228110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Damien Marie (Biotech Campus, Geneva, Switzerland) for critically reading the manuscript and Jacob Film for native English corrections, as well as Rainer Goebel and Armin Heinecke (Brain Innovation, Maastricht, The Netherlands) for help with BrainVoyager-related questions. J.B. and J.R. received funding from the Swiss National Science Foundation. M.B. was supported by the Olympia-Morata Program of the Heidelberg Medical Faculty and by the Research Fund of the University of Basel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Blatow.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benner, J., Wengenroth, M., Reinhardt, J. et al. Prevalence and function of Heschl’s gyrus morphotypes in musicians. Brain Struct Funct 222, 3587–3603 (2017). https://doi.org/10.1007/s00429-017-1419-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1419-x

Keywords

Navigation