Skip to main content

Advertisement

Log in

New tools to study the role of B cells in cytomegalovirus infections

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

B cells were previously shown to mediate partial protection against CMV infection, as in the absence of B cells, latently infected mice were more susceptible to virus reactivation. It remains unclear if this effect stems from the loss of B cells as antibody producers or as antigen presenting cells. To address this fundamental question, we propose to make use of new mouse models that allow conditional ablation of B cells or that allow for the generation of mice with B cells that are not able to produce antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844

    Article  CAS  PubMed  Google Scholar 

  2. Hsieh SM, Pan SC, Hung CC, Tsai HC, Chen MY, Chang SC (2001) Association between cytomegalovirus-specific reactivity of T cell subsets and development of cytomegalovirus retinitis in patients with acquired immunodeficiency syndrome [see comment]. J Infect Dis 184:1386–1391

    Article  CAS  PubMed  Google Scholar 

  3. Lilleri D, Piccinini G, Baldanti F, Seminari E, Galloni D, Gerna G (2003) Multiple relapses of human cytomegalovirus retinitis during HAART in an AIDS patient with reconstitution of CD4+ T cell count in the absence of HCMV-specific CD4+ T cell response. J Clin Virol 26:95–100

    Article  PubMed  Google Scholar 

  4. Rubin RH (1990) Impact of cytomegalovirus infection on organ transplant recipients. Rev Infect Dis 12 Suppl 12(Suppl 7):S754–S766

    Article  Google Scholar 

  5. Crawford SW, Longton G, Storb R (1993) Acute graft-versus-host disease and the risks for idiopathic pneumonia after marrow transplantation for severe aplastic anemia. Bone Marrow Transplant 12:225–231

    CAS  PubMed  Google Scholar 

  6. Mach M (2006) Antibody-mediated neutralization of infectivity. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk (UK), pp 265–283

  7. Shanley JD, Jordan MC, Stevens JG (1981) Modification by adoptive humoral immunity of murine cytomegalovirus infection. J Infect Dis 143:231–237

    Article  CAS  PubMed  Google Scholar 

  8. Reddehase MJ, Balthesen M, Rapp M, Jonjic S, Pavic I, Koszinowski UH (1994) The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med 179:185–193

    Article  CAS  PubMed  Google Scholar 

  9. Farrell HE, Shellam GR (1991) Protection against murine cytomegalovirus infection by passive transfer of neutralizing and non-neutralizing monoclonal antibodies. J Gen Virol 72(Pt 1):149–156

    Article  CAS  PubMed  Google Scholar 

  10. Jonjic S, Pavic I, Polic B, Crnkovic I, Lucin P, Koszinowski UH (1994) Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J Exp Med 179:1713–1717

    Article  CAS  PubMed  Google Scholar 

  11. Polic B, Hengel H, Krmpotic A, Trgovcich J, Pavic I, Luccaronin P, Jonjic S, Koszinowski UH (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188:1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klenovsek K, Weisel F, Schneider A, Appelt U, Jonjic S, Messerle M, Bradel-Tretheway B, Winkler TH, Mach M (2007) Protection from CMV infection in immunodeficient hosts by adoptive transfer of memory B cells. Blood 110:3472–3479

    Article  CAS  PubMed  Google Scholar 

  13. Cerny A, Sutter S, Bazin H, Hengartner H, Zinkernagel RM (1988) Clearance of lymphocytic choriomeningitis virus in antibody- and B-cell-deprived mice. J Virol 62:1803–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fillatreau S, Radbruch A (2006) IRF4—a factor for class switching and antibody secretion. Nat Immunol 7:704–706

    Article  CAS  PubMed  Google Scholar 

  15. Ahuja A, Shupe J, Dunn R, Kashgarian M, Kehry MR, Shlomchik MJ (2007) Depletion of B cells in murine lupus: efficacy and resistance. J Immunol 179:3351–3361

    Article  CAS  PubMed  Google Scholar 

  16. Kessel A, Rosner I, Toubi E (2008) Rituximab: beyond simple B cell depletion. Clin Rev Allergy Immunol 34:74–79

    Article  CAS  PubMed  Google Scholar 

  17. Hunt KE, Reichard KK (2008) Diffuse large B-cell lymphoma. Arch Pathol Lab Med 132:118–124

    Article  PubMed  Google Scholar 

  18. Kitamura D, Roes J, Kuhn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350:423–426

    Article  CAS  PubMed  Google Scholar 

  19. Mozdzanowska K, Furchner M, Maiese K, Gerhard W (1997) CD4+ T cells are ineffective in clearing a pulmonary infection with influenza type A virus in the absence of B cells. Virology 239:217–225

    Article  CAS  PubMed  Google Scholar 

  20. Buendia AJ, Martinez CM, Ortega N, Del Rio L, Caro MR, Gallego MC, Sanchez J, Navarro JA, Cuello F, Salinas J (2004) Natural killer (NK) cells play a critical role in the early innate immune response to Chlamydophila abortus infection in mice. J Comp Pathol 130:48–57

    Article  CAS  PubMed  Google Scholar 

  21. Hasan M, Polic B, Bralic M, Jonjic S, Rajewsky K (2002) Incomplete block of B cell development and immunoglobulin production in mice carrying the muMT mutation on the BALB/c background. Eur J Immunol 32:3463–3471

    Article  CAS  PubMed  Google Scholar 

  22. Macpherson AJ, Lamarre A, McCoy K, Harriman GR, Odermatt B, Dougan G, Hengartner H, Zinkernagel RM (2001) IgA production without mu or delta chain expression in developing B cells. Nat Immunol 2:625–631

    Article  CAS  PubMed  Google Scholar 

  23. Gu H, Zou YR, Rajewsky K (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73:1155–1164

    Article  CAS  PubMed  Google Scholar 

  24. Bradley LM, Harbertson J, Biederman E, Zhang Y, Bradley SM, Linton PJ (2002) Availability of antigen-presenting cells can determine the extent of CD4 effector expansion and priming for secretion of Th2 cytokines in vivo. Eur J Immunol 32:2338–2346

    Article  CAS  PubMed  Google Scholar 

  25. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F et al (2002) In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 17:211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buch T, Heppner FL, Tertilt C, Heinen TJ, Kremer M, Wunderlich FT, Jung S, Waisman A (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2:419–426

    Article  CAS  PubMed  Google Scholar 

  27. Waisman A, Kraus M, Seagal J, Ghosh S, Melamed D, Song J, Sasaki Y, Classen S, Lutz C, Brombacher F et al (2007) IgG1 B cell receptor signaling is inhibited by CD22 and promotes the development of B cells whose survival is less dependent on Ig{alpha}/{beta}. J Exp Med 204:747–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was funded by the Deutsche Forschungsgemeinschaft grant SFB490 (TPE8) and FP6 Marie Curie Research Training Network MRTN-CT-2004-005632 (IMDEMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Waisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waisman, A., Croxford, A.L. & Demircik, F. New tools to study the role of B cells in cytomegalovirus infections. Med Microbiol Immunol 197, 145–149 (2008). https://doi.org/10.1007/s00430-008-0088-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-008-0088-z

Keywords

Navigation