Skip to main content

Advertisement

Log in

The effects of Japanese encephalitis virus antibodies on Zika virus infection

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Recently, Zika virus (ZIKV) has become more widespread, thus attracting global attention. The vaccine against Japanese encephalitis virus (JEV) is currently used in China, being included in planned immunisation regimes. Although ZIKV and JEV are closely related mosquito-borne Flaviviruses, and a complex cross-immune response within flaviviruses has been demonstrated, the effect of JEV vaccination on ZIKV infection has not been well described. Thus, this study aimed to explore the impact of different titres of anti-JEV antibodies (Abs) against ZIKV infection using sera from healthy human donors in Guangzhou and anti-JEV rabbit polyclonal antibodies (pAbs) in vitro and vivo. Human anti-JEV Ab titres were tested at decreasing concentrations as the age increased. A neutralising effect on ZIKV infection was observed when anti-JEV Ab titres in human sera or rabbit pAbs were high (the corresponding age was under 30 years). Even though a lower titre in human sera showed no apparent effect, whereas rabbit pAbs had an antibody-dependent enhancement(ADE)effect, we proved an ADE effect in vivo for the first time. This study suggests that individuals over 60 years of age are at high risk for JEV and ZIKV infection, and screening this age group for infection should strengthen. Furthermore, a deep exploration of the relationship between anti-JEV Abs and ZIKV infection is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kindhauser MK, Allen T, Frank V, Santhana RS, Dye C (2016) Zika: the origin and spread of a mosquito-borne virus. Bull World Health Organ 94:675–686

    PubMed  PubMed Central  Google Scholar 

  2. Heymann DL, Hodgson A, Sall AA, Freedman DO, Staples JE, Althabe F, Menon KE et al (2016) Zika virus and microcephaly: why is this situation a PHEIC? Lancet 387:719–721

    PubMed  Google Scholar 

  3. Hills SL, Fischer M, Petersen LR (2017) Epidemiology of Zika Virus Infection. J Infect Dis 216:S868–S874

    PubMed  PubMed Central  Google Scholar 

  4. Zhang X, Jia R, Shen H, Wang M, Yin Z, Cheng A (2017) Structures and functions of the envelope glycoprotein in Flavivirus infections. Viruses 9:e338

    PubMed  Google Scholar 

  5. Stiasny K, Kiermayr S, Holzmann H, Heinz FX (2006) Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. J Virol 80:9557–9568

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Heinz FX, Stiasny K (2012) Flaviviruses and their antigenic structure. J Clin Virol 55:289–295

    CAS  PubMed  Google Scholar 

  7. Dai L, Wang Q, Qi J, Shi Y, Yan J, Gao GF (2016) Molecular basis of antibody-mediated neutralization and protection against flavivirus. IUBMB Life 68:783–791

    CAS  PubMed  Google Scholar 

  8. Pierson TC, Xu Q, Nelson S, Oliphant T, Nybakken GE, Fremont DH, Diamond MS (2007) The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 1:135–145

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Halstead SB, O’Rourke EJ (1977) Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 146:201–217

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fagbami AH, Halstead SB, Marchette NJ, Larsen K (1987) Cross-infection enhancement among African Flaviviruses by immune mouse ascitic fluids. Cytobios 49:49–55

    CAS  PubMed  Google Scholar 

  11. Fagbami AH, Halstead SB (1986) Antibody-mediated enhancement of Wesselsbron virus in P388D1 cells. Afr J Med Med Sci 15:103–107

    CAS  PubMed  Google Scholar 

  12. Fagbami A, Halstead SB, Marchette N, Larsen K (1988) Heterologous flavivirus infection-enhancing antibodies in sera of Nigerians. Am J Trop Med Hygiene 38:205–207

    CAS  Google Scholar 

  13. Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A, Bianchi S, Corti S et al (2016) Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353:823–826

    CAS  PubMed  Google Scholar 

  14. Barba-Spaeth G, Dejnirattisai W, Rouvinski A, Vaney MC, Medits I, Sharma A, Rey FA et al (2016) Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature 536:48–53

    CAS  PubMed  Google Scholar 

  15. Sariol CA, Nogueira ML, Vasilakis N (2017) A tale of two viruses: does heterologous flavivirus immunity enhance Zika disease? Trends Microbiol 26:186–190

    PubMed  PubMed Central  Google Scholar 

  16. Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, Lim LK et al (2017) Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356:175–180

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Paul LM, Carlin ER, Jenkins MM, Tan AL, Barcellona CM, Nicholson CO, Isern S et al (2016) Dengue virus antibodies enhance Zika virus infection. Clin Transl Immunology 5:e117

    PubMed  PubMed Central  Google Scholar 

  18. Charles AS, Christofferson RC (2016) Utility of a dengue-derived monoclonal antibody to enhance Zika infection in vitro. PLoS Curr 8:97–98

    Google Scholar 

  19. Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, Screaton GR et al (2016) Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus. Nat Immunol 17:1102–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Saito Y, Moi ML, Takeshita N, Lim CK, Shiba H, Hosono K, Takasaki T et al (2016) Japanese encephalitis vaccine-facilitated dengue virus infection-enhancement antibody in adults. BMC Infect Dis 16:578

    PubMed  PubMed Central  Google Scholar 

  21. Upadhyay AK, Cyr M, Longenecker K, Tripathi R, Sun C, Kempf DJ (2017) Crystal structure of full-length Zika virus NS5 protein reveals a conformation similar to Japanese encephalitis virus NS5. Acta Crystallogr F Struct Biol Commun 73:116–122

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Li X, Ma SJ, Liu X, Jiang LN, Zhou JH, Xiong YQ, Chen Q et al (2014) Immunogenicity and safety of currently available Japanese encephalitis vaccines: a systematic review. Hum Vaccin Immunother 10:3579–3593

    PubMed  Google Scholar 

  23. Gao X, Li X, Li M, Fu S, Wang H, Lu Z, Liang G et al (2014) Vaccine strategies for the control and prevention of Japanese encephalitis in Mainland China, 1951–2011. PLoS Negl Trop Dis 8:e3015

    PubMed  PubMed Central  Google Scholar 

  24. Chen L, Liu Y, Wang S, Sun J, Wang P, Xin Q, Wang W et al (2017) Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Res 141:140–149

    CAS  PubMed  Google Scholar 

  25. Castanha P, Nascimento E, Braga C, Cordeiro MT, de Carvalho OV, de Mendonca LR, Marques E et al (2017) Dengue virus-specific antibodies enhance Brazilian Zika virus infection. J Infect Dis 215:781–785

    CAS  PubMed  Google Scholar 

  26. Gu W, Guo L, Yu H, Niu J, Huang M, Luo X, Wang Y et al (2015) Involvement of CD16 in antibody-dependent enhancement of porcine reproductive and respiratory syndrome virus infection. J Gen Virol 96:1712–1722

    CAS  PubMed  Google Scholar 

  27. Ma Z, Liu J, Wu W, Zhang E, Zhang X, Lu Q, Li M et al (2017) The IL-1R/TLR signaling pathway is essential for efficient CD8 + T-cell responses against hepatitis B virus in the hydrodynamic injection mouse model. Cell Mol Immunol 14:997

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Raboni SM, Bonfim C, Almeida BM, Zanluca C, Koishi AC, Rodrigues P, Duarte DS et al (2017) Flavivirus cross-reactivity in serological tests and Guillain-Barre syndrome in a hematopoietic stem cell transplant patient: a case report. Transpl Infect Dis 19:e12700

    Google Scholar 

  29. Raboni SM, Duarte DSC (2017) Flavivirus cross-reactivity, Guillain-Barre syndrome, and hematopoietic stem cell transplant patient: comment response. Transpl Infect Dis 19:e12719

    Google Scholar 

  30. Mansfield KL, Horton DL, Johnson N, Li L, Barrett AD, Smith DJ, Fooks A et al (2011) Flavivirus-induced antibody cross-reactivity. J Gen Virol 92:2821–2829

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Priyamvada L, Hudson W, Ahmed R, Wrammert J (2017) Humoral cross-reactivity between Zika and dengue viruses: implications for protection and pathology. Emerg Microbes Infect 6:e33

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li J, Gao N, Fan D, Chen H, Sheng Z, Fu S, An J et al (2016) Cross-protection induced by Japanese encephalitis vaccines against different genotypes of Dengue viruses in mice. Sci Rep 6:19953

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Monath TP (2002) Editorial: jennerian vaccination against West Nile virus. Am J Trop Med Hyg 66:113–114

    PubMed  Google Scholar 

  34. Tesh RB, Travassos DRA, Guzman H, Araujo TP, Xiao SY (2002) Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis. Emerg Infect Dis 8:245–251

    PubMed  PubMed Central  Google Scholar 

  35. Takasaki T, Yabe S, Nerome R, Ito M, Yamada K, Kurane I (2003) Partial protective effect of inactivated Japanese encephalitis vaccine on lethal West Nile virus infection in mice. Vaccine 21:4514–4518

    CAS  PubMed  Google Scholar 

  36. Kanesa-Thasan N, Putnak JR, Mangiafico JA, Saluzzo JE, Ludwig GV (2002) Short report: absence of protective neutralizng antibodies to West Nile virus in subjects following vaccination with Japanese encephalitis or dengue vaccines. Am J Trop Med Hyg 66:115–116

    CAS  PubMed  Google Scholar 

  37. Moi ML, Takasaki T, Saijo M, Kurane I (2013) Dengue virus infection-enhancing activity of undiluted sera obtained from patients with secondary dengue virus infection. Trans R Soc Trop Med Hyg 107:51–58

    CAS  PubMed  Google Scholar 

  38. Bhaumik SK, Priyamvada L, Kauffman RC, Lai L, Natrajan MS, Cho A, Wrammert J et al (2018) Pre-existing dengue immunity drives a DENV-biased plasmablast response in ZIKV-infected patient. Viruses 11:e19

    PubMed  Google Scholar 

  39. Chen J, Wen K, Li XQ, Yi HS, Ding XX, Huang YF, Fu N et al (2016) Functional properties of DENV EDIII reactive antibodies in human DENV1 infected sera and rabbit antisera to EDIII. Mol Med Rep 14:1799–1808

    CAS  PubMed  Google Scholar 

  40. Pantoja P, Perez-Guzman EX, Rodriguez IV, White LJ, Gonzalez O, Serrano C, Sariol C et al (2017) Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity to dengue virus. Nat Commun 8:15674

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chokephaibulkit K, Sirivichayakul C, Thisyakorn U, Pancharoen C, Boaz M, Bouckenooghe A, Feroldi E (2016) Long-term follow-up of Japanese encephalitis chimeric virus vaccine: immune responses in children. Vaccine 34:5664–5669

    CAS  PubMed  Google Scholar 

  42. Pan JR, Yan JY, Zhou JY, Tang XW, He HQ, Xie RH, Xie S et al (2016) Sero-molecular epidemiology of Japanese encephalitis in Zhejiang, an Eastern Province of China. PLoS Negl Trop Dis 10:e4936

    Google Scholar 

  43. Xiong Y, Chen Q (2014) Epidemiology of dengue fever in China since 1978. Nan Fang Yi Ke Da Xue Xue Bao 34(12):1822–1825

    PubMed  Google Scholar 

  44. Luo L, Jiang LY, Xiao XC, Di B, Jing QL, Wang SY, Yang Z et al (2017) The dengue preface to endemic in mainland China: the historical largest outbreak by Aedes albopictus in Guangzhou, 2014. Infect Dis Poverty 6:148

    PubMed  PubMed Central  Google Scholar 

  45. Yang L, Chen Y, Yan H, Zhang P, Xu X, Tang B, Ren R et al (2015) A survey of the 2014 dengue fever epidemic in Guangzhou. China. Emerg Microbes Infect 4:e57

    PubMed  Google Scholar 

  46. Oliphant T, Engle M, Nybakken GE, Doane C, Johnson S, Huang L, Diamond MS et al (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11:522–530

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Saokaew N, Poungpair O, Panya A, Tarasuk M, Sawasdee N, Limjindaporn T, Yenchitsomanus P et al (2014) Human monoclonal single-chain antibodies specific to dengue virus envelope protein. Lett Appl Microbiol 58:270–277

    CAS  PubMed  Google Scholar 

  48. Deng WL, Guan CY, Liu K, Zhang XM, Feng XL, Zhou B, Chen P et al (2014) Fine mapping of a linear epitope on EDIII of Japanese encephalitis virus using a novel neutralizing monoclonal antibody. Virus Res 179:133–139

    CAS  PubMed  Google Scholar 

  49. Zhou Y, Austin SK, Fremont DH, Yount BL, Huynh JP, de Silva AM, Messer WB et al (2013) The mechanism of differential neutralization of dengue serotype 3 strains by monoclonal antibody 8A1. Virology 439:57–64

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Smith DR, Hollidge B, Daye S, Zeng X, Blancett C, Kuszpit K et al (2017) Neuropathogenesis of zika virus in a highly susceptible immunocompetent mouse model after antibody blockade of type i interferon. Plos Negl Trop Dis. https://doi.org/10.1371/journal.pntd.0005296

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Guangzhou CDC for generously providing us with the volunteer sera samples and all the participants of this study and research institute staff for their technical support and contributions to this study.

Funding

This research was funded by the National Key R and D Program of China (grant no. 2018YFC1602206), National Natural Science Foundation of China (Grant no. 31470271, 81730110), Guangdong and Guangzhou Science and Technology Program key projects (Grant no. 2018B020207006 and 201803040006) and special fund for science and technology innovation cultivation of Guangdong university students in 2018 Climbing Program (pdjhb0103).

Author information

Authors and Affiliations

Authors

Contributions

XH, XL and YJ conceived, designed and performed the experiments, analysed the data and wrote the manuscript; LZ, PC, CD, TC and WF performed the experiments and analysed the data; ZQ, XL, YC and DZ supervise the experiments and gave method advice. XL, WX, BZ and QX and provided technical guidance. WZ and QW played an important role in the study design, the decision to publish, and the preparation of the manuscript.

Corresponding authors

Correspondence to Qinghua Wu or Wei Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Ethical approval

All the persons involved, including parents of minors, have been acquired the purpose with the informed consent. The experimental procedures with blood samples were approved by the Institutional Ethics Review Board of Southern Medical University. Furthermore, the mice handling and experimental procedures were performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocols were approved by the Institutional Animal Care and Use Committees of the Southern Medical University (Permit Number: L2018018).

Additional information

Edited by Matthias J. Reddehase.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 32 kb)

Supplementary material 2 (DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Lang, X., Yu, J. et al. The effects of Japanese encephalitis virus antibodies on Zika virus infection. Med Microbiol Immunol 209, 177–188 (2020). https://doi.org/10.1007/s00430-020-00658-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-020-00658-2

Keywords

Navigation