Skip to main content

Advertisement

Log in

Anti-tumour activity of phosphoinositide-3-kinase antagonist AEZS 126 in models of triple-negative breast cancer

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Of more than one million global cases of breast cancer diagnosed each year, a high percentage are characterized as triple-negative, lacking the oestrogen, progesterone and Her2/neu receptors. The incidence exceeds the incidence of malignancies like CML by far. Lack of effective therapies, younger age at onset and early metastatic spread have contributed to the poor prognosis and outcomes associated with these malignancies.

Methods

Here, we investigate the ability of the PI3K/AKT inhibitor AEZS 126 to selectively target the triple-negative breast cancer (TNBC) cell proliferation and survival in vitro by MTT-assays and FACS-based analysis. Furthermore, the mechanism of cytotoxicity is analysed by FACS-based assays and Western blots.

Results

AEZS 126 showed good anti-tumour activity in in vitro models of TNBC as well as in MCF-7 cells. Main mechanism of cytotoxicity seems to be programmed cell death after an incubation time of 72 h, which could be abrogated by co-incubation with z-VAD-fmk in MCF-7 and MDA-MB468 cells. In HCC1806 cells, addition of necrostatin-1 has only slightly protective effects, but in HCC1937 cells, the addition of necrostatin-1 has the same protective effect as co-incubation with z-VAD-fmk, and this observation argues for cell death caused by apoptosis and necroptosis in this cell line.

Conclusion

We demonstrated the highly efficient anti-tumour activity of AEZS 126 in in vitro models of TNBC. Due to the good anti-tumour activity and the expected favourable toxicity profile, AEZS 126 in combination with chemotherapy seems to be a promising candidate for clinical testing in TNBC especially in the basal-like subgroup of TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anders C, Carey LA (2008) Understanding and treating triple-negative breast cancer. Oncology 22:1233–1243

    PubMed  Google Scholar 

  • Ashkenazi A (2008) Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 7:1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Bauer KR, Brown M, Cress RD et al (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109:1721–1728

    Article  PubMed  Google Scholar 

  • Boucher D, Blais V, Denault JB (2012) Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis. PNAS 109:5669–5674

    Article  PubMed  CAS  Google Scholar 

  • Bröker LE, Huisman C, Simone W et al (2004) Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. Cancer Res 64:27–30

    Article  PubMed  Google Scholar 

  • Campling BG, Pym J, Galbraith PR et al (1988) Use of the MTT assay for rapid determination of chemosensitivity of human leukemic blast cells. Leuk Res 12:823–831

    Article  PubMed  CAS  Google Scholar 

  • Candé C, Cecconi F, Dessen P et al (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115:4727–4734

    Article  PubMed  Google Scholar 

  • Carey LA, Dees EC, Sawyer L et al (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334

    Article  PubMed  CAS  Google Scholar 

  • Chautan M, Chazal G, Cecconi F et al (1999) Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 9:967–970

    Article  PubMed  CAS  Google Scholar 

  • Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22:263–268

    Article  PubMed  CAS  Google Scholar 

  • Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  PubMed  CAS  Google Scholar 

  • Degterev A, Hitomi J, Germscheid M et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  PubMed  CAS  Google Scholar 

  • Dent R, Trudeau M, Pritchard KI et al (2007) Triple negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434

    Article  PubMed  Google Scholar 

  • Engel JB, Martens T, Hahne JC et al (2012) Effects of Lobaplatin as single agent and in combination with TRAIL on the growth of triple negative p53 mutated breast cancers in vitro. Anticancer Drugs 23:426–436

    Article  PubMed  CAS  Google Scholar 

  • Frasci G, Comella P, Rinaldo M et al (2009) Preoperative weekly cisplatin-epirubicin-paclitaxel with G-CSF support in triple-negative large operable breast cancer. Ann Oncol 20:1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Haffty BG, Yang Q, Reiss M et al (2006) Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24:5652–5657

    Article  PubMed  Google Scholar 

  • Hahne JC, Honig A, Meyer SR et al (2012) Downregulation of AKT reverses platinum resistance of human breast cancers in vitro. Oncol Rep 28:2023–2028

    PubMed  CAS  Google Scholar 

  • Han J, Zhong CQ, Zhang DW (2011) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 12:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Jänicke RU, Ng P, Sprengart ML et al (1998a) Caspase-3 is required for α-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem 273:15540–15545

    Article  PubMed  Google Scholar 

  • Jänicke RU, Sprengart ML, Wati MR et al (1998b) Caspase-3 Is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360

    Article  PubMed  Google Scholar 

  • Kennedy RD, Quinn JE, Mullan PB et al (2004) The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst 96:1659–1668

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 16:3–11

    Article  PubMed  CAS  Google Scholar 

  • Lehmann BD, Bauer JA, Chen X et al (2011) Pietenpol. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767

    Article  PubMed  CAS  Google Scholar 

  • Leist M, Jäättelä M (2001) Four death and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 8:589–598

    Article  Google Scholar 

  • Leong CO, Vidnovic N, DeYoung MP et al (2007) The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest 117:1370–1380

    Article  PubMed  CAS  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  PubMed  CAS  Google Scholar 

  • Lin NU, Claus E, Sohl J et al (2008) Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer 113:2638–2645

    Article  PubMed  Google Scholar 

  • Makin G, Hickman JA (2000) Apoptosis and cancer chemotherapy. Cell Tissue Res 301:143–152

    Article  PubMed  CAS  Google Scholar 

  • Miao B, Degterev A (2009) Methods to analyze cellular necroptosis. Methods Mol Biol 559:79–93

    Article  PubMed  CAS  Google Scholar 

  • Morris GJ, Naidu S, Topham AK et al (2007) Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and End Results database. Cancer 110:876–884

    Article  PubMed  Google Scholar 

  • Moulder SL (2010) Does the PI3 K pathway play a role in basal breast cancer? Clin Breast Cancer 3:66–71

    Article  Google Scholar 

  • Pal SK, Childs BH, Pegram M (2011) Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat 125:627–636

    Article  PubMed  CAS  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  • Rakha EA, Ellis IO (2009) Triple-negative/basal-like breast cancer: review. Pathology 41:40–47

    Article  PubMed  Google Scholar 

  • Rakha EA, El-Sayed ME, Green AR et al (2007) Prognosticmarkers in triple-negative breast cancer. Cancer 109:25–32

    Article  PubMed  CAS  Google Scholar 

  • Rozman-Pungercar J, Kopitar-Jerala N, Bogyo M et al (2003) Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity. Cell Death Differ 10:881–888

    Article  PubMed  CAS  Google Scholar 

  • Sirohi B, Arnedos M, Popat S et al (2008) Platinum-based chemotherapy in triple-negative breast cancer. Ann Oncol 19:1847–1852

    Article  PubMed  CAS  Google Scholar 

  • Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–7326

    Article  PubMed  CAS  Google Scholar 

  • Tischkowitz M, Brunet JS, Begin LR et al (2007) Use of immunohistochemical markers can refine prognosis in triple negative breast cancer. BMC Cancer 7:134

    Article  PubMed  Google Scholar 

  • Torrisi R, Balduzzi A, Ghisini R et al (2008) Tailored preoperative treatment of locally advanced triple negative (hormone receptor negative and HER2 negative) breast cancer with epirubicin, cisplatin, and infusional fluorouracil followed by weekly paclitaxel. Cancer Chemother Pharmacol 62:667–672

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Phys 195:158–167

    Article  CAS  Google Scholar 

  • Vandenabeele P, Galluzzi L, van den Berghe T et al (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  PubMed  CAS  Google Scholar 

  • Xuan Y, Hu X (2009) Naturally-occurring shikonin analogues—a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett 274:233–242

    Article  PubMed  CAS  Google Scholar 

  • Yang XH, Sladek TL, Liu X et al (2001) Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res 61:348–354

    PubMed  CAS  Google Scholar 

  • Yuan J, Kroemer G (2010) Alternative cell death mechanisms in development and beyond. Genes Dev 24:2592–25602

    Article  PubMed  CAS  Google Scholar 

  • Zheng TS, Hunot S, Kuida K et al (2000) Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat Med 6:1241–1247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the permission to use the INTAS ChemoStar Imager (Department of Microbiology, University of Würzburg). Therefore, we thank especially Prof. Rudel and Dr. Bergmann. This work was supported by a grant from IZKF (Interdiziplinäres Zentrum für Klinische Forschung; University of Würzburg).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Honig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahne, J.C., Schmidt, H., Meyer, S.R. et al. Anti-tumour activity of phosphoinositide-3-kinase antagonist AEZS 126 in models of triple-negative breast cancer. J Cancer Res Clin Oncol 139, 905–914 (2013). https://doi.org/10.1007/s00432-013-1399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-013-1399-z

Keywords

Navigation