Skip to main content

Advertisement

Log in

A cisplatin-resistant head and neck cancer cell line with cytoplasmic p53mut exhibits ATP-binding cassette transporter upregulation and high glutathione levels

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Head and neck squamous cell carcinoma (HNSCC) cell lines with cytoplasmically sequestered mutant p53 (p53mut_c) are frequently more resistant to cisplatin (CDDP) than cells with mutant but nuclear p53 (p53mut_n). The aim of the study was to identify underlying mechanisms implicated in CDDP resistance of HNSCC cells carrying cytoplasmic p53mut.

Methods

Microarray analysis, quantitative reverse transcription polymerase chain reaction, Western blot analysis and immunocytochemistry were used to identify and evaluate candidate genes involved in CDDP resistance of p53mut_c cells. RNAi knockdown or treatment with inhibitors together with flow cytometry-based methods was used for functional assessment of the identified candidate genes. Cellular metabolic activity was assessed with the XTT assay, and the redox capacity of cells was evaluated by measuring cellular glutathione (GSH) levels.

Results

Upregulation of ABCC2 and ABCG2 transporters was observed in CDDP-resistant p53mut_c HNSCC cells. Furthermore, p53mut_c cells exhibited a pronounced side population that could be suppressed by RNAi knockdown of ABCG2 as well as treatment with the ATP-binding-cassette transporter inhibitors imatinib, MK571 and tariquidar. Metabolic activity and cellular GSH levels were higher in CDDP-resistant p53mut_c cells, consistent with a higher capacity to fend off cytotoxic oxidative effects such as those caused by CDDP treatment. Finally, ABCC2/G2 inhibition of HNSCC cells with MK571 markedly enhanced CDDP sensitivity of HNSCC cells.

Conclusions

The observations in this study point to a major role of p53mut_c in conferring a stem cell like phenotype to HNSCC cells that is associated with ABCC2/G2 overexpression, high GSH and metabolic activity levels as well as CDDP resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akiyama M (2010) ABCA12 mutations and autosomal recessive congenital ichthyosis: a review of genotype/phenotype correlations and of pathogenetic concepts. Hum Mutat 31:1090–1096

    Article  PubMed  CAS  Google Scholar 

  • Alqawi O, Bates S, Georges E (2004) Arginine482 to threonine mutation in the breast cancer resistance protein ABCG2 inhibits rhodamine 123 transport while increasing binding. Biochem J 382:711–716

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bahr O, Wick W, Weller M (2001) Modulation of MDR/MRP by wild-type and mutant p53. J Clin Invest 107:643–645

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3 K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brendel C, Scharenberg C, Dohse M, Robey RW, Bates SE, Shukla S, Ambudkar SV, Wang Y, Wennemuth G, Burchert A, Boudriot U, Neubauer A (2007) Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 21:1267–1275

    Article  PubMed  CAS  Google Scholar 

  • Bush JA, Li G (2002) Cancer chemoresistance: the relationship between p53 and multidrug transporters. Int J Cancer 98:323–330

    Article  PubMed  CAS  Google Scholar 

  • Chen HH, Kuo MT (2010) Role of glutathione in the regulation of Cisplatin resistance in cancer chemotherapy. Met Based Drugs 2010:430939

  • Chen ZS, Tiwari AK (2011) Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J 278:3226–3245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chin KV, Ueda K, Pastan I, Gottesman MM (1992) Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 255:459–462

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Konig J, Buchholz JK, Spring H, Leier I, Keppler D (1999) Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 55:929–937

    PubMed  CAS  Google Scholar 

  • De Angelis P, Stokke T, Smedshammer L, Lothe RA, Lehne G, Chen Y, Clausen OP (1995) P-glycoprotein is not expressed in a majority of colorectal carcinomas and is not regulated by mutant p53 in vivo. Br J Cancer 72:307–311

    Article  PubMed  PubMed Central  Google Scholar 

  • de Kant E, Heide I, Thiede C, Herrmann R, Rochlitz CF (1996) MDR1 expression correlates with mutant p53 expression in colorectal cancer metastases. J Cancer Res Clin Oncol 122:671–675

    Article  PubMed  Google Scholar 

  • Deb D, Scian M, Roth KE, Li W, Keiger J, Chakraborti AS, Deb SP, Deb S (2002) Hetero-oligomerization does not compromise ‘gain of function’ of tumor-derived p53 mutants. Oncogene 21:176–189

    Article  PubMed  CAS  Google Scholar 

  • Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, Finlay C, Levine AJ (1993) Gain of function mutations in p53. Nat Genet 4:42–46

    Article  PubMed  CAS  Google Scholar 

  • Dohse M, Scharenberg C, Shukla S, Robey RW, Volkmann T, Deeken JF, Brendel C, Ambudkar SV, Neubauer A, Bates SE (2010) Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab Dispos 38:1371–1380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  PubMed  CAS  Google Scholar 

  • Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    Article  PubMed  CAS  Google Scholar 

  • Gualberto A, Aldape K, Kozakiewicz K, Tlsty TD (1998) An oncogenic form of p53 confers a dominant, gain-of-function phenotype that disrupts spindle checkpoint control. Proc Natl Acad Sci U S A 95:5166–5171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guminski AD, Balleine RL, Chiew YE, Webster LR, Tapner M, Farrell GC, Harnett PR, deFazio A (2006) MRP2 (ABCC2) and cisplatin sensitivity in hepatocytes and human ovarian carcinoma. Gynecol Oncol 100:239–246

    Article  PubMed  CAS  Google Scholar 

  • Hait WN, Yang JM (2006) The individualization of cancer therapy: the unexpected role of p53. Trans Am Clin Climatol Assoc 117:85–101

    PubMed  PubMed Central  Google Scholar 

  • Hall MD, Okabe M, Shen DW, Liang XJ, Gottesman MM (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 48:495–535

    Article  PubMed  CAS  Google Scholar 

  • Hamdoun AM, Cherr GN, Roepke TA, Epel D (2004) Activation of multidrug efflux transporter activity at fertilization in sea urchin embryos (Strongylocentrotus purpuratus). Dev Biol 276:452–462

    Article  PubMed  CAS  Google Scholar 

  • Holland IB (2011) ABC transporters, mechanisms and biology: an overview. Essays Biochem 50:1–17

    Article  PubMed  CAS  Google Scholar 

  • Jedlitschky G, Hoffmann U, Kroemer HK (2006) Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opin Drug Metab Toxicol 2:351–366

    Article  PubMed  CAS  Google Scholar 

  • Kim ES, Glisson BS (2003) Treatment of metastatic head and neck cancer: chemotherapy and novel agents. Cancer Treat Res 114:295–314

    Article  PubMed  Google Scholar 

  • Kuhnle M, Egger M, Muller C, Mahringer A, Bernhardt G, Fricker G, Konig B, Buschauer A (2009) Potent and selective inhibitors of breast cancer resistance protein (ABCG2) derived from the p-glycoprotein (ABCB1) modulator tariquidar. J Med Chem 52:1190–1197

    Article  PubMed  Google Scholar 

  • Lansford C, Grenman R, Bier H, Somers KD, Kim S-Y, Whiteside TL, Clayman G, Carey TE (1999) Head and neck cancers. In: Masters J (ed) Human cell culture, vol 2., Cancer cell lines part 2Kluwer Academic Press, Dordrecht (Holland), pp 185–255

    Chapter  Google Scholar 

  • Liedert B, Materna V, Schadendorf D, Thomale J, Lage H (2003) Overexpression of cMOAT (MRP2/ABCC2) is associated with decreased formation of platinum-DNA adducts and decreased G2-arrest in melanoma cells resistant to cisplatin. J Invest Dermatol 121:172–176

    Article  PubMed  CAS  Google Scholar 

  • Lim YC, Oh SY, Cha YY, Kim SH, Jin X, Kim H (2011) Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas. Oral Oncol 47:83–91

    Article  PubMed  Google Scholar 

  • Lindenbergh-van der Plas M, Brakenhoff RH, Kuik DJ, Buijze M, Bloemena E, Snijders PJ, Leemans CR, Braakhuis BJ (2011) Prognostic significance of truncating TP53 mutations in head and neck squamous cell carcinoma. Clin Cancer Res 17:3733–3741

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Lu SM, Yu L, Tian JJ, Li JF, Wang HB, Xu W (2012) Role of ABCB1 and ABCG2 in the multidrug resistance of hypopharyngeal carcinoma FaDu cell line. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 47:305–310

    PubMed  Google Scholar 

  • Makarova G, Bette M, Schmidt A, Jacob R, Cai C, Rodepeter F, Betz T, Sitterberg J, Bakowsky U, Moll R, Neff A, Sesterhenn A, Teymoortash A, Ocker M, Werner JA, Mandic R (2013) Epidermal growth factor-induced modulation of cytokeratin expression levels influences the morphological phenotype of head and neck squamous cell carcinoma cells. Cell Tissue Res 351:59–72

    Article  PubMed  CAS  Google Scholar 

  • Mandic R, Schamberger CJ, Muller JF, Geyer M, Zhu L, Carey TE, Grenman R, Dunne AA, Werner JA (2005) Reduced cisplatin sensitivity of head and neck squamous cell carcinoma cell lines correlates with mutations affecting the COOH-terminal nuclear localization signal of p53. Clin Cancer Res 11:6845–6852

    Article  PubMed  CAS  Google Scholar 

  • Mansilla S, Rojas M, Bataller M, Priebe W, Portugal J (2007) Circumvention of the multidrug-resistance protein (MRP-1) by an antitumor drug through specific inhibition of gene transcription in breast tumor cells. Biochem Pharmacol 73:934–942

    Article  PubMed  CAS  Google Scholar 

  • Materna V, Lage H (2003) Homozygous mutation Arg768Trp in the ABC-transporter encoding gene MRP2/cMOAT/ABCC2 causes Dubin-Johnson syndrome in a Caucasian patient. J Hum Genet 48:484–486

    Article  PubMed  CAS  Google Scholar 

  • Materna V, Pleger J, Hoffmann U, Lage H (2004) RNA expression of MDR1/P-glycoprotein, DNA-topoisomerase I, and MRP2 in ovarian carcinoma patients: correlation with chemotherapeutic response. Gynecol Oncol 94:152–160

    Article  PubMed  CAS  Google Scholar 

  • Materna V, Liedert B, Thomale J, Lage H (2005) Protection of platinum-DNA adduct formation and reversal of cisplatin resistance by anti-MRP2 hammerhead ribozymes in human cancer cells. Int J Cancer 115:393–402

    Article  PubMed  CAS  Google Scholar 

  • Matsson P, Pedersen JM, Norinder U, Bergstrom CA, Artursson P (2009) Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res 26:1816–1831

    Article  PubMed  CAS  Google Scholar 

  • Moll UM, LaQuaglia M, Benard J, Riou G (1995) Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci U S A 92:4407–4411

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nguyen KT, Liu B, Ueda K, Gottesman MM, Pastan I, Chin KV (1994) Transactivation of the human multidrug resistance (MDR1) gene promoter by p53 mutants. Oncol Res 6:71–77

    PubMed  CAS  Google Scholar 

  • Nielsen OH, Munck LK (2007) Drug insight: aminosalicylates for the treatment of IBD. Nat Clin Pract Gastroenterol Hepatol 4:160–170

    Article  PubMed  CAS  Google Scholar 

  • Niu Q, Wang W, Li Y, Ruden DM, Wang F, Li Y, Wang F, Song J, Zheng K (2012) Low molecular weight heparin ablates lung cancer cisplatin-resistance by inducing proteasome-mediated ABCG2 protein degradation. PLoS ONE 7:e41035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Payen L, Sparfel L, Courtois A, Vernhet L, Guillouzo A, Fardel O (2002) The drug efflux pump MRP2: regulation of expression in physiopathological situations and by endogenous and exogenous compounds. Cell Biol Toxicol 18:221–233

    Article  PubMed  CAS  Google Scholar 

  • Rao SD, Fury MG, Pfister DG (2012) Molecular-targeted therapies in head and neck cancer. Semin Radiat Oncol 22:207–213

    Article  PubMed  CAS  Google Scholar 

  • Robey RW, Steadman K, Polgar O, Morisaki K, Blayney M, Mistry P, Bates SE (2004) Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Res 64:1242–1246

    Article  PubMed  CAS  Google Scholar 

  • Robey RW, Lin B, Qiu J, Chan LL, Bates SE (2011) Rapid detection of ABC transporter interaction: potential utility in pharmacology. J Pharmacol Toxicol Methods 63:217–222

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH, Wang Q, Zambetti GP, Schuetz JD (2001) Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem 276:39359–39367

    Article  PubMed  CAS  Google Scholar 

  • Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99:507–512

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Dong P, Li D, Gao S (2011) Expression and function of ABCG2 in head and neck squamous cell carcinoma and cell lines. Exp Ther Med 2:1151–1157

    PubMed  CAS  PubMed Central  Google Scholar 

  • Song J, Chang I, Chen Z, Kang M, Wang CY (2010) Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling. PLoS ONE 5:e11456

    Article  PubMed  PubMed Central  Google Scholar 

  • Souid AK, Gao C, Wang L, Milgrom E, Shen WC (2006) ELM1 is required for multidrug resistance in Saccharomyces cerevisiae. Genetics 173:1919–1937

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sullivan GF, Yang JM, Vassil A, Yang J, Bash-Babula J, Hait WN (2000) Regulation of expression of the multidrug resistance protein MRP1 by p53 in human prostate cancer cells. J Clin Invest 105:1261–1267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sun G, Fujii M, Sonoda A, Tokumaru Y, Matsunaga T, Habu N (2010) Identification of stem-like cells in head and neck cancer cell lines. Anticancer Res 30:2005–2010

    PubMed  Google Scholar 

  • Surowiak P, Materna V, Kaplenko I, Spaczynski M, Dolinska-Krajewska B, Gebarowska E, Dietel M, Zabel M, Lage H (2006) ABCC2 (MRP2, cMOAT) can be localized in the nuclear membrane of ovarian carcinomas and correlates with resistance to cisplatin and clinical outcome. Clin Cancer Res 12:7149–7158

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi K, Wada M, Kohno K, Nakamura T, Kawabe T, Kawakami M, Kagotani K, Okumura K, Akiyama S, Kuwano M (1996) A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res 56:4124–4129

    PubMed  CAS  Google Scholar 

  • To KK, Yu L, Liu S, Fu J, Cho CH (2012) Constitutive AhR activation leads to concomitant ABCG2-mediated multidrug resistance in cisplatin-resistant esophageal carcinoma cells. Mol Carcinog 51:449–464

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Toh S, Taniguchi K, Nakamura T, Uchiumi T, Kohno K, Yoshida I, Kimura A, Sakisaka S, Adachi Y, Kuwano M (1998) Mutations in the canilicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II/Dubin-Johnson syndrome. Hum Mol Genet 7:203–207

    Article  PubMed  CAS  Google Scholar 

  • Wang QJ, Beck WT (1998) Transcriptional suppression of multidrug resistance-associated protein (MRP) gene expression by wild-type p53. Cancer Res 58:5762–5769

    PubMed  CAS  Google Scholar 

  • Williamson G, Aeberli I, Miguet L, Zhang Z, Sanchez MB, Crespy V, Barron D, Needs P, Kroon PA, Glavinas H, Krajcsi P, Grigorov M (2007) Interaction of positional isomers of quercetin glucuronides with the transporter ABCC2 (cMOAT, MRP2). Drug Metab Dispos 35:1262–1268

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa M, Tsuchihashi K, Ishimoto T, Yae T, Motohara T, Sugihara E, Onishi N, Masuko T, Yoshizawa K, Kawashiri S, Mukai M, Asoda S, Kawana H, Nakagawa T, Saya H, Nagano O (2013) xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res 73(6):1855–1866

    Article  PubMed  CAS  Google Scholar 

  • Zambetti GP (2007) The p53 mutation “gradient effect” and its clinical implications. J Cell Physiol 213:370–373

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Sano D, Pickering CR, Jasser SA, Henderson YC, Clayman GL, Sturgis EM, Ow TJ, Lotan R, Carey TE, Sacks PG, Grandis JR, Sidransky D, Heldin NE, Myers JN (2011) Assembly and initial characterization of a panel of 85 genomically validated cell lines from diverse head and neck tumor sites. Clin Cancer Res 17:7248–7264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zutz A, Gompf S, Schagger H, Tampe R (2009) Mitochondrial ABC proteins in health and disease. Biochim Biophys Acta 1787:681–690

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Technical assistance by Ms. Roswitha Peldszus and Ms. Maria Sadowski (Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany) was greatly appreciated. The authors thank Dr. Florian Finkernagel (Institute for Molecular Biology and Tumor Research, Philipps University, Marburg, Germany) and Mr. Tomi Bähr-Ivacevic (Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany) for their help during microarray analysis. The authors thank Dr. Michael Pütz (Department of Neurology, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany) for the use of their real-time thermal PCR cycler. R.M. was supported by a research grant of the University Medical Center Giessen and Marburg. C. B was supported by a grant of the Deutsche Forschungsgemeinschaft (Klinische Forschergruppe 210).

Conflict of interest

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Mandic.

Additional information

Manuel Tonigold and Annette Rossmann have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

432_2014_1727_MOESM1_ESM.tif

Supplementary material Western blot analysis of whole cell lysates derived from UM-SCC-3p53mut_n and UT-SCC-26Ap53mut_c cells, treated for 2 days with 3.125, 6.25 or 12.5 µM CDDP in the presence or absence of 100 µM MK571, was tested for expression of MAP LC3β, p21CIP1/Waf1, caspase-3, p53 and β-actin. Bands derived from three independent Western blots were quantified and normalized to β-actin as described in the Materials and methods section. In UM-SCC-3p53mut_n cells, the most significant change in protein expression was noted for p21CIP1/WAF1, which decreased with rising CDDP levels and even more so if MK571 was present. A similar tendency could also be observed for p53. Although not reaching significance, in UM-SCC-3p53mut_n cells, the expression of uncleaved caspase 3 went down in the presence of MK571. This effect was much less pronounced in UT-SCC-26Ap53mut_c cells. In UT-SCC-26Ap53mut_c cells, p21CIP1/WAF1 went up significantly if MK571 was added even in the absence of CDDP but significantly decreased with rising CDDP levels, as did cells that did not receive this inhibitor. Similar to p21CIP1/WAF1, p53 also went up significantly in the same cell line after MK571 addition in the absence of CDDP. Interestingly, in UM-SCC-3p53mut_n cells MK571 treatment induced a marked expression of MAP LC3β, a marker of autophagy in a CDDP dose-dependent fashion. The course of MAP LC3β expression to some level paralleled the reduction of p21CIP1/Waf1 and to a lesser extent p53 levels. A minor induction of MAP LC3β was also noted in UT-SCC-26Ap53mut_c cells in the presence of MK571; however, p21CIP1/Waf1 and p53 levels appeared rather induced after inhibitor treatment. The observed changes in MAP LC3β levels did not reach significance although a clear upregulation was seen in single blots (#3). *p<0.05, **p<0.01, ***p<0.001 (TIFF 4079 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonigold, M., Rossmann, A., Meinold, M. et al. A cisplatin-resistant head and neck cancer cell line with cytoplasmic p53mut exhibits ATP-binding cassette transporter upregulation and high glutathione levels. J Cancer Res Clin Oncol 140, 1689–1704 (2014). https://doi.org/10.1007/s00432-014-1727-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-014-1727-y

Keywords

Navigation