Skip to main content
Log in

Detection of Toxoplasma gondii in water by an immunomagnetic separation method targeting the sporocysts

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

An immunomagnetic separation (IMS) method was developed to detect Toxoplasma gondii in fresh waters by using the monoclonal antibody 4B6 targeting the sporocyst wall of T. gondii, Hammondia hammondi, Hammondia heydorni, and Neospora caninum. Water concentrates obtained by filtering 10- to 20-l samples samples were spiked with Toxoplasma oocysts, sonicated to release the sporocysts, and analyzed by IMS-4B6. Mean sporocyst recoveries were 74.5 ± 5.3% in drinking water, 30.6 ± 2.4 and 37.1 ± 3.2% in surface waters, and 81.6 ± 2.1% in IMS buffer. Then, this IMS method was integrated in a multistep procedure (i.e., filtration, IMS, immunofluorescence and autofluorescence) to detect Toxoplasma in unspiked and spiked water samples (10–30 l) of various qualities. Sporocyst recoveries ranged from 14.4 to 44.7% in drinking water samples spiked with 1–10 oocysts/l, and from 17.8 to 32.5% in surface water samples spiked with 10 oocysts/l. Sporocysts were not detected in 25 unspiked water samples. A sporocyst-like structure was seen in one of these unspiked samples, but its coccidian nature could not be proved by three polymerase chain reaction (PCR) methods targeting sequences of coccidian small and large subunit rRNA genes and Toxoplasma repetitive elements. In conclusion, IMS-4B6 is relevant for the detection of Toxoplasma in water generating small concentrates (<1 ml). Due to 4B6 cross-reactions, a PCR would be useful to further characterize coccidian sporocysts found microscopically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ajzenberg D, Bañuls AL, Su C, Dumètre A, Demar M, Carme B, Dardé ML (2004) Genetic diversity, clonality and sexuality in Toxoplasma gondii. Int J Parasitol 34:1185–1196

    Article  PubMed  CAS  Google Scholar 

  • Belli SI, Smith N, Ferguson DJ (2006) The coccidian oocyst: a tough nut to crack! Trends Parasitol 22:416–423

    Article  PubMed  CAS  Google Scholar 

  • Bukhari Z, McCuin RM, Fricker CR, Clancy JL (1998) Immunomagnetic separation of Cryptosporidium parvum from source water samples of various turbidities. Appl Environ Microbiol 64:4495–4499

    PubMed  CAS  Google Scholar 

  • Cassaing S, Bessieres MH, Berry A, Berrebi A, Fabre R, Magnaval JF (2006) Comparison between two amplification sets for molecular diagnosis of toxoplasmosis of real-time PCR. J Clin Microbiol 44:720–724

    Article  PubMed  CAS  Google Scholar 

  • de Moura L, Bahia-Oliveira LMG, Wada MY, Jones JL, Tuboi SH, Carmo EH, Ramalho WM, Camargo NJ, Trevisan R, Graça RMT, da Silva AJ, Moura L, Dubey JP, Garrett DO (2006) Waterborne toxoplasmosis, Brazil: from field to gene. Emerg Infect Dis 12:326–329

    PubMed  Google Scholar 

  • Di Giovanni GD, Hashemi FH, Shaw NJ, Abrams FA, LeChevallier MW, Abbaszadegan M (1999) Detection of infectious Cryptosporidium parvum oocysts in surface and filter backwash water samples by immunomagnetic separation and integrated cell culture-PCR. Appl Environ Microbiol 65:3427–3432

    PubMed  Google Scholar 

  • Dubey JP (2004) Toxoplasmosis–a waterborne zoonosis. Vet Parasitol 126:57–72

    Article  PubMed  CAS  Google Scholar 

  • Dubey JP, Beattie CP (1988) Toxoplasmosis of animals and man. CRC, Boca Raton, Florida

    Google Scholar 

  • Dubey JP, Miller NL, Frenkel JK (1970) Characterization of the new fecal form of Toxoplasma gondii. J Parasitol 56:447–456

    Article  PubMed  CAS  Google Scholar 

  • Dubey JP, Gomez-Marin JE, Bedoya A, Lora F, Vianna MCB, Hill D, Kwok OCH, Shen SK, Marcet PL, Lehmann T (2005) Genetic and biologic characteristics of Toxoplasma gondii isolates of free-range chickens from Colombia, South America. Vet Parasitol 135:67–72

    Article  Google Scholar 

  • Dubey J.P, Su C, Oliveira J, Morales JA, Bolaños RV, Sundar N, Kwok OCH, Shen SK (2006) Biologic and genetic characteristics of Toxoplasma gondii isolates of free-range chickens from Costa Rica, Central America. Vet Parasitol 139:29–36

    Article  PubMed  CAS  Google Scholar 

  • Dumètre A, Dardé ML (2005) Immunomagnetic separation of Toxoplasma gondii oocysts using a monoclonal antibody directed against the oocyst wall. J Microbiol Methods 61:209–217

    Article  PubMed  Google Scholar 

  • Ellis JT, Morrison DA, Liddell S, Jenkins MC, Mohammed OB, Ryce C, Dubey JP (1999) The genus Hammondia is paraphyletic. Parasitol 118:357–362

    Article  Google Scholar 

  • Ho MSY, Barr BC, Marsh AE, Anderson ML, Rowe JD, Tarantal AF, Hendrickx AG, Sverlow K, Dubey JP, Conrad PA (1996) Identification of bovine Neospora parasites by PCR amplification and specific small-subunit rRNA sequence probe hybridization. J Clin Microbiol 34:1203–1208

    PubMed  CAS  Google Scholar 

  • Homan WL, Vercammen M, De Braekeleer J, Verschueren H (2000) Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int J Parasitol 30:69–75

    Article  PubMed  CAS  Google Scholar 

  • Howe DK, Sibley LD (1995) Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 172:1561–1566

    PubMed  CAS  Google Scholar 

  • Inoue M, Rai SK, Oda T, Kimura K, Nakanishi M, Hotta H, Uga S (2003) A new filter-eluting solution that facilitates improved recovery of Cryptosporidium oocysts from water. J Microbiol Methods 55:679–686

    Article  PubMed  Google Scholar 

  • Kourenti C, Karanis P (2006) Evaluation and applicability of a purification method coupled with nested PCR for the detection of Toxoplasma oocysts in water. Lett Appl Microbiol 43:475–481

    Article  PubMed  CAS  Google Scholar 

  • Lindquist HD, Bennet JW, Hester JD, Ware MW, Dubey JP, Everson WV (2003) Autofluorescence of Toxoplasma gondii and related coccidian oocysts. J Parasitol 89:865–867

    Article  PubMed  Google Scholar 

  • Lindsay DS, Upton SJ, Dubey JP (1999) A structural study of the Neospora caninum oocyst. Int J Parasitol 29:1521–1523

    Article  PubMed  CAS  Google Scholar 

  • McCuin RM, Bukhari Z, Sobrinho J, Clancy JL (2001) Recovery of Cryptosporidium oocysts and Giardia cysts from source water concentrates using immunomagnetic separation. J Microbiol Methods 45:69–76

    Article  PubMed  CAS  Google Scholar 

  • Musial CE, Arrowood MJ, Sterling CR, Gerba CP (1987) Detection of Cryptosporidium in water by using polypropylene cartridge filters. Appl Environ Microbiol 53:687–692

    PubMed  CAS  Google Scholar 

  • Riahi H, Dardé ML, Bouteille B, Leboutet MJ, Pestre-Alexandre M (1995) Hammondia hammondi cysts in cell cultures. J Parasitol 81:821–824

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues AAR, Gennari SM, Aguiar DM, Sreekumar C, Hill DE, Miska KB, Vianna MCB, Dubey JP (2004) Shedding of Neospora caninum oocysts by dogs fed tissues from naturally infected water buffaloes (Bubalus bubalis) from Brazil. Vet Parasitol 124:139–150

    Article  PubMed  CAS  Google Scholar 

  • Schares G, Pantchev N, Barutzki D, Heydron AO, Bauer C, Conraths FJ (2005) Oocysts of Neospora caninum, Hammondia heydorni, Toxoplasma gondii and Hammondia hammondi in faeces collected from dogs in Germany. Int J Parasitol 35:1525–1537

    Article  PubMed  CAS  Google Scholar 

  • Sroka J, Wojcik-Fatla A, Dutkiewicz J (2006) Occurrence of Toxoplasma gondii in water from wells located on farms. Ann Agric Environ Med 13:169–175

    PubMed  Google Scholar 

  • USEPA (2001) Method 1623: Giardia and Cryptosporidium in water by filtration/IMS/FA. United States Environmental Protection Agency. Office of Water, Washington, DC. EPA 821-R01-025

  • Villena I, Aubert D, Gomis P, Ferté H, Inglard JC, Denis-Bisiaux H, Dondon JM, Pisano E, Ortis N, Pinon JM (2004) Evaluation of a strategy for Toxoplasma gondii oocyst detection in water. Appl Environ Microbiol 70:4035–4039

    Article  PubMed  CAS  Google Scholar 

  • Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank J.P. Dubey, A. Freyre, and G. Schares for T. gondii, N. caninum, and H. heydorni isolates. We thank L. Moulin (CRECEP, Paris) for technical assistance in PCR experiments. This work was supported by Programme Régional d’Aide à la Recherche Universitaire and Fonds de Croissance Recherche 2002–2003 (Conseil Régional du Limousin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laure Dardé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumètre, A., Dardé, ML. Detection of Toxoplasma gondii in water by an immunomagnetic separation method targeting the sporocysts. Parasitol Res 101, 989–996 (2007). https://doi.org/10.1007/s00436-007-0573-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-007-0573-0

Keywords

Navigation