Skip to main content
Log in

Echinostoma trivolvis (Digenea: Echinostomatidae) second intermediate host preference matches host suitability

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Many trematodes infect a single mollusk species as their first intermediate host, and then infect a variety of second intermediate host species. Determining the factors that shape host specificity is an important step towards understanding trematode infection dynamics. Toward this end, we studied two pond snails (Physa gyrina and Helisoma trivolvis) that can be infected as second intermediate hosts by the trematode Echinostoma trivolvis lineage a (ETa). We performed laboratory preference trials with ETa cercariae in the presence of both snail species and also characterized host suitability by quantifying encystment and excystment success for each host species alone. We tested the prediction that trematodes might preferentially infect species other than their obligate first intermediate host (in this case, H. trivolvis) as second intermediate hosts to avoid potentially greater host mortality associated with residing in first intermediate hosts. In our experiments, ETa had roughly equivalent encystment success in Helisoma and Physa snails, but greater excystment success in Physa, when offered each species in isolation. Also, the presence of the symbiotic oligochaete Chaetogaster limnaei in a subset of Helisoma snails reduced encystment success in those individuals. When both hosts were present, we found dramatically reduced infection prevalence and intensity in Helisoma—ETa cercariae strongly preferred Physa. Thus, the presence of either an alternative host, or a predator of free-living parasites, offered protection for Helisoma snails from E. trivolvis lineage a infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adema CM, Loker ES (1997) Specificity and immunobiology of larval Digenean–snail associations. In: Fried B, Graczyk TK (eds) Advances in trematode biology. CRC Press, Boca Raton, pp 230–253

    Google Scholar 

  • Anderson JW, Fried B (1987) Experimental infection of Physa heterostropha, Helisoma trivolvis, and Biomphalaria glabrata (Gastropoda) with Echinostoma revolutum (Trematoda) cercariae. J Parasitol 73:49–54

    Article  PubMed  CAS  Google Scholar 

  • Apperson CS, Hassan HK, Harrison BA, Savage HM, Aspen SE, Farajollahi A, Crans W, Daniels TJ, Falco RC, Benedict M, Anderson M, McMillen L, Unnasch TR (2004) Host feeding patterns of established and potential mosquito vectors of West Nile virus in the eastern United States. Vector Borne Zoonotic Dis 4:71–82

    Article  PubMed  Google Scholar 

  • Basáñez M-G, Razali K, Renz A, Kelly D (2007) Density-dependent host choice by disease vectors: epidemiological implications of the ideal free distribution. Trans R Soc Trop Med Hyg 101:256–269

    Article  PubMed  Google Scholar 

  • Belden LK, Wojdak JM (2011) The combined influence of trematode parasites and predatory salamanders on wood frog (Rana sylvatica) tadpoles. Oecologia 166:1077–1086

    Article  PubMed  Google Scholar 

  • Belden LK, Widder PD, Fischer LR, Carter AB, Wojdak JM (2009) Hatching of Echinostoma trivolvis miracidia in response to snail host and non-host chemical cues. Parasitol Res 105:883–885

    Article  PubMed  Google Scholar 

  • Christensen NØ, Frandsen F, Roushdy MZ (1980) The influence of environmental conditions and parasite-intermediate host-related factors on the transmission of Echinostoma liei. Z Parasitenkunde 63:47–63

    Article  Google Scholar 

  • Crawley M (2007) The R book. Wiley, New York

    Book  Google Scholar 

  • Detwiler JT, Minchella DJ (2009) Intermediate host availability masks the strength of experimentally-derived colonization patterns in Echinostome trematodes. Int J Parasitol 39:585–590

    Article  PubMed  Google Scholar 

  • Detwiler JT, Bos DH, Minchella DJ (2010) Revealing the secret lives of cryptic species: examining the phylogenetic relationships of echinostome parasites in North America. Mol Phylogenet Evol 55:611–620

    Article  PubMed  Google Scholar 

  • Detwiler JT, Zajac AM, Minchella DJ, Belden LK (2012) Revealing cryptic diversity in a definitive host: echinostomes in muskrats. J Parasitol (in press)

  • Donald KM, Kennedy M, Poulin R, Spencer HG (2004) Host specificity and molecular phylogeny of larval Digenea isolated from New Zealand and Australian topshells (Gastropoda: Trochidae). Int J Parasitol 34:557–568

    Article  PubMed  CAS  Google Scholar 

  • Evans NA, Gordon DM (1983) Experimental observations on the specificity of Echinoparyphium recurvatum toward second intermediate hosts. Z Parasitenkunde 69:217–222

    Article  Google Scholar 

  • Evans NA, Whitfield PJ, Dobson AP (1981) Parasite utilization of a host community: the distribution and occurrence of metacercarial cysts of Echinoparyphium recurvatum (Digenea: Echinostomatidae) in seven species of mollusk at Harting Pond, Sussex. Parasitology 83:1–12

    Article  Google Scholar 

  • Fredensborg BL, Mouritsen KN, Poulin R (2005) Impact of trematodes on host survival and population density in the intertidal gastropod Zeacumantus subcarinatus. Mar Ecol Prog Ser 290:109–117

    Article  Google Scholar 

  • Fried B, Frazer BA, Kanev I (1998) Comparative observations on cercariae and metacercariae of Echinostoma trivolvis and Echinoparyphium sp. J Parasitol 84:623–626

    Article  PubMed  CAS  Google Scholar 

  • Fried B, People RC, Saxton TM, Huffman JE (2008) The association of Zygocotyle lunata and Echinostoma trivolvis with Chaetogaster limnaei, an ectosymbiont of Helisoma trivolvis. J Parasitol 94:553–554

    Article  PubMed  Google Scholar 

  • Holland MP (2010) Echinostome-induced mortality varies across amphibian species in the field. J Parasitol 96:851–855

    Article  PubMed  Google Scholar 

  • Holland MP, Skelly DK, Kashgarian M, Bolden SR, Harrison LM, Cappello M (2007) Echinostome infection in green frogs (Rana clamitans) is stage and age dependent. J Zool 271:455–462

    Article  Google Scholar 

  • Hope ACA (1968) A simplified Monte Carlo significance test procedure. J R Stat Soc Ser B 30:582–598

    Google Scholar 

  • Ibrahim MM (2007) Population dynamics of Chaetogaster limnaei (Oligochaeta: Naididae) in the field populations of freshwater snails and its implications as a potential regulator of trematode larvae community. Parasitol Res 101:25–33

    Article  PubMed  Google Scholar 

  • Irwin SWB, Fried B (1990) Scanning and transmission electron microscopic observations on metacercariae of Echinostoma trivolvis and Echinostoma caproni during in vitro excystation. J Helminthol Soc Wash 57:79–83

    Google Scholar 

  • Johnson PTJ, Dobson A, Lafferty KD, Marcogliese DJ, Memmott J, Orlofske SA, Poulin R, Thieltges DW (2010) When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol Evol 25:362–371

    Article  PubMed  Google Scholar 

  • Keeler SP, Huffman JE (2009) Echinostomes in the second intermediate hosts. In: Fried B, Toledo R (eds) The biology of echinostomes. Springer, Berlin, pp 61–87

    Chapter  Google Scholar 

  • Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, Hudson P, Jolles A, Jones KE, Mitchell CE, Myers SS, Bogich T, Ostfeld RS (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647–652

    Article  PubMed  CAS  Google Scholar 

  • Kelly DW, Thompson CE (2000) Epidemiology and optimal foraging: modeling the ideal free distribution of insect vectors. Parasitology 120:319–327

    Article  PubMed  Google Scholar 

  • Khalil LF (1961) On the capture and destruction of miracidia by Chaetogaster limnaei (Oligochaeta). J Helminthol 34:269–274

    Article  Google Scholar 

  • Kuris AM, Warren J (1980) Echinostome cercarial penetration and metacercarial encystment as mortality factors for a second intermediate host, Biomphalaria glabrata. J Parasitol 66:630–635

    Article  PubMed  CAS  Google Scholar 

  • Levins R, MacArthur R (1969) An hypothesis to explain the incidence of monophagy. Ecology 50:910–911

    Article  Google Scholar 

  • McCarthy AM (1990) Experimental observations on the specificity of Apatemon (Australapatemon) minor (Yamaguti 1933) (Digenea: Strigeidae) toward leech (Hirudinea) second intermediate hosts. Parasitology 64:161–167

    CAS  Google Scholar 

  • McCarthy AM (1999) The influence of second intermediate host species on the infectivity of metacercarial cysts of Echinoparyphium recurvatum. J Helminthol 73:143–145

    Google Scholar 

  • McCarthy AM, Kanev I (1990) Pseudechinoparyphium echinatum (Digenea: Echinostomatidae): experimental observations on cercarial specificity toward second intermediate hosts. Parasitology 100:423–428

    Article  PubMed  Google Scholar 

  • Michelson EH (1964) The protective action of Chaetogaster limnaei on snails exposed to Schistosoma mansoni. J Parasitol 50:441–444

    Article  PubMed  CAS  Google Scholar 

  • Minchella DJ, Scott ME (1991) Parasitism: a cryptic determinant of animal community structure. Trends Ecol Evol 6:250–254

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available from http://www.R-project.org/

  • Raffel TR, Hoverman JT, Halstead NT, Michel PJ, Rohr JR (2010) Parasitism in a community context: trait-mediated interactions with competition and predation. Ecology 91:1900–1907

    Article  PubMed  Google Scholar 

  • Roberts L, Janovy J, Schmidt P (2004) Foundations of parasitology, 7th edn. McGraw-Hill, New York

    Google Scholar 

  • Sankurathri C, Holmes JC (1976) Effects of thermal effluents on parasites and commensals of Physa gyrina Say (Mollusca: Gastropoda) and their interactions at Lake Wabamun, Alberta. Canad J of Zool 54:1742–1753

    Article  Google Scholar 

  • Sapp KK, Loker ES (2000) Mechanisms underlying Digenean–snail specificity: role of miracidial attachment and host plasma factors. J Parasitol 86:1012–1019

    PubMed  CAS  Google Scholar 

  • Saxton TM, Fried B, Peoples RC (2008) Excystation of the encysted metacercariae of Echinostoma trivolvis and Echinostoma caproni in a trypsin-bile salts-cysteine medium and morphometric analysis of the excysted larvae. J Parasitol 94:669–671

    PubMed  Google Scholar 

  • Schell S (1985) Trematodes of North America north of Mexico. Idaho Research Foundation

  • Schotthoefer AM, Cole RA, Beasley VR (2003) Relationship of tadpole stage to location of echinostome cercariae encystment and the consequences for tadpole survival. J Parasitol 89:475–482

    Article  PubMed  Google Scholar 

  • Sorensen RE, Minchella DJ (2001) Snail–trematode life history interactions: past trends and future directions. Parasitology 123:S3–S18

    Article  PubMed  Google Scholar 

  • Szuroczki D, Richardson JML (2009) The role of trematode parasites in larval anuran communities: an aquatic ecologist’s guide to the major players. Oecologia 161:371–385

    Article  PubMed  Google Scholar 

  • Ward SA, Leather SR, Pickup J, Harrington R (1998) Mortality during dispersal and the cost of host-specificity in parasites: how many aphids find hosts? J Anim Ecol 67:763–773

    Article  Google Scholar 

  • Wedderburn RVM (1974) Quasi-likelihood functions, generalized linear models, and the Gauss–Newton method. Biometrika 61:439–447

    Google Scholar 

  • Werner EE, Hall DJ (1974) Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55:1042–1052

    Article  Google Scholar 

  • Zuur AF, Ieno NE, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgments

Research support was provided by grants from the National Science Foundation (NSF) to Belden (DEB-0918960) and Wojdak (DEB-0918656). L. Clay and S. Moore were funded by a Research Experience for Undergraduates supplement to NSF DEB-0918960. T. Williams was funded through the Multicultural Academic Opportunities Program at Virginia Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy M. Wojdak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojdak, J.M., Clay, L., Moore, S. et al. Echinostoma trivolvis (Digenea: Echinostomatidae) second intermediate host preference matches host suitability. Parasitol Res 112, 799–805 (2013). https://doi.org/10.1007/s00436-012-3203-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3203-4

Keywords

Navigation