Skip to main content

Advertisement

Log in

MiR-278-3p regulates pyrethroid resistance in Culex pipiens pallens

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) regulate gene expression and biological processes including embryonic development, innate immunity, and infection in many species. Emerging evidence indicates that miRNAs are involved in drug resistance. However, little is known about the relationship between the miRNAs and insecticide resistance in mosquitos. Here, we reported that conserved miR-278-3p and its target gene are critical for pyrethroid resistance in Culex pipiens pallens. We found that CYP6AG11 is the target of miR-278-3p, through bioinformatic analysis and experimental verification. The expression level of miR-278-3p was lower, whereas the level of CYP6AG11 was higher in deltamethrin-resistant strain, which were detected using quantitative reverse transcription PCR (qRT–PCR). We also found that CYP6AG11 was regulated by miR-278-3p via a specific target site with the 3′ untranslated region (UTR) by luciferase reporter assay. In addition, overexpression of CYP6AG11 in the mosquito C6/36 cells showed better proliferation than the cells with empty vector when treated by deltamethrin at different concentrations. Moreover, the overexpression of miR-278-3p through microinjection led to a significant reduction in the survival rate, and the level of CYP6AG11 was simultaneously reduced. These results indicated that miR-278-3p could regulate the pyrethroid resistance through CYP6AG11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aizoun N et al (2013) Comparison of the standard WHO susceptibility tests and the CDC bottle bioassay for the determination of insecticide susceptibility in malaria vectors and their correlation with biochemical and molecular biology assays in Benin, West Africa. Parasite Vectors 6:147

    Article  Google Scholar 

  • Azizullah A et al (2014) Chlorophyll derivatives can be an efficient weapon in the fight against dengue. Parasitol Res. doi:10.1007/s00436-014-4175-3

    PubMed  Google Scholar 

  • Bonizzoni M et al (2012) Comparative transcriptome analyses of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from Kenya by RNA-Seq. PLoS One 7(9):e44607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bouvier JC, Boivin T, Beslay D, Sauphanor B (2002) Age-dependent response to insecticides and enzymatic variation in susceptible and resistant codling moth larvae. Arch Insect Biochem Physiol 51(2):55–66

    Article  CAS  PubMed  Google Scholar 

  • Bouzid M, Colon-Gonzalez FJ, Lung T, Lake IR, Hunter PR (2014) Climate change and the emergence of vector-borne diseases in Europe: case study of dengue fever. BMC Public Health 14(1):781

    Article  PubMed Central  PubMed  Google Scholar 

  • Cai ZG, Zhang SM, Zhang H, Zhou YY, Wu HB, Xu XP (2013) Aberrant expression of microRNAs involved in epithelial-mesenchymal transition of HT-29 cell line. Cell Biol Int 37(7):669–674

    Article  CAS  PubMed  Google Scholar 

  • Chandor-Proust A et al (2013) The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling. Biochem J 455(1):75–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang Y et al (2010) Hepatic stellate cell-specific gene silencing induced by an artificial microRNA for antifibrosis in vitro. Dig Dis Sci 55(3):642–653

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Liang Z, Liang Y, Pang R, Zhang W (2013) Conserved microRNAs miR-8-5p and miR-2a-3p modulate chitin biosynthesis in response to 20-hydroxyecdysone signaling in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 43(9):839–848

    Article  CAS  PubMed  Google Scholar 

  • Dedeoglu BG (2014) High-throughput approaches for microRNA expression analysis. Methods Mol Biol 1107:91–103

    Article  PubMed  Google Scholar 

  • Edi CV et al (2014) CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PLoS Genet 10(3):e1004236

    Article  PubMed Central  PubMed  Google Scholar 

  • Fulci V et al (2007) Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 109(11):4944–4951

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Sivakumar R (2014) Larvicidal, ovicidal, and adulticidal efficacy of Erythrina indica (Lam.) (Family: Fabaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 113(2):777–791

    Article  PubMed  Google Scholar 

  • Hewezi T, Maier TR, Nettleton D, Baum TJ (2012) The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol 159(1):321–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang XM et al (2012) Cloning and identification of microRNAs in earthworm (Eisenia fetida). Biochem Genet 50(1–2):1–11

    Article  CAS  PubMed  Google Scholar 

  • Huber K et al (2014) Distribution and genetic structure of Aedes japonicus japonicus populations (Diptera: Culicidae) in Germany. Parasitol Res 113(9):3201–3210

    Article  PubMed  Google Scholar 

  • Kotewong R, Duangkaew P, Srisook E, Sarapusit S, Rongnoparut P (2014) Structure-function relationships of inhibition of mosquito cytochrome P450 enzymes by flavonoids of Andrographis paniculata. Parasitol Res 113(9):3381–3392

    Article  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee KH et al (2014) MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1. Biochim Biophys Acta 1843(9):2055–2066

    Article  CAS  PubMed  Google Scholar 

  • Lertkiatmongkol P, Jenwitheesuk E, Rongnoparut P (2011) Homology modeling of mosquito cytochrome P450 enzymes involved in pyrethroid metabolism: insights into differences in substrate selectivity. BMC Res Notes 4:321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li L et al (2012) Differences in microRNAs and their expressions between foraging and dancing honey bees, Apis mellifera L. J Insect Physiol 58(11):1438–1443

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Tuo W, Gao H, Zhu XQ (2010) MicroRNAs of parasites: current status and future perspectives. Parasitol Res 107(3):501–507

    Article  PubMed  Google Scholar 

  • Marimuthu G, Rajamohan S, Mohan R, Krishnamoorthy Y (2012) Larvicidal and ovicidal properties of leaf and seed extracts of Delonix elata (L.) Gamble (family: Fabaceae) against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti Linn.) (Diptera: Culicidae) vector mosquitoes. Parasitol Res 111(1):65–77

    Article  PubMed  Google Scholar 

  • Pio G, Malerba D, D’Elia D, Ceci M (2014) Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach. BMC Bioinforma 15(Suppl 1):S4

    Article  Google Scholar 

  • Qiu L, Wang H, Xia X, Zhou H, Xu Z (2008) A construct with fluorescent indicators for conditional expression of miRNA. BMC Biotechnol 8:77

    Article  PubMed Central  PubMed  Google Scholar 

  • Samaraweera L, Grandinetti KB, Huang R, Spengler BA, Ross RA (2014) MicroRNAs define distinct human neuroblastoma cell phenotypes and regulate their differentiation and tumorigenicity. BMC Cancer 14:309

    Article  PubMed Central  PubMed  Google Scholar 

  • Somwang P et al (2011) Enzymes-based resistant mechanism in pyrethroid resistant and susceptible Aedes aegypti strains from northern Thailand. Parasitol Res 109(3):531–537

    Article  PubMed  Google Scholar 

  • Teleman AA, Maitra S, Cohen SM (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20(4):417–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Truini A et al (2014) Role of microRNAs in malignant mesothelioma. Cell Mol Life Sci 71(15):2865–2878

    Article  CAS  PubMed  Google Scholar 

  • White MT et al (2014) Negative cross resistance mediated by co-treated bed nets: a potential means of restoring pyrethroid-susceptibility to malaria vectors. PLoS One 9(5):e95640

    Article  PubMed Central  PubMed  Google Scholar 

  • WHO (2013) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. WHO, Geneva

  • Yang Z et al (2014) Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol. doi:10.1007/s00592-014-0617-8

    PubMed Central  Google Scholar 

  • Yu H et al (2012) Epstein-Barr virus downregulates microRNA 203 through the oncoprotein latent membrane protein 1: a contribution to increased tumor incidence in epithelial cells. J Virol 86(6):3088–3099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zellweger RM, Miller R, Eddy WE, White LJ, Johnston RE, Shresta S (2013) Role of humoral versus cellular responses induced by a protective dengue vaccine candidate. PLoS Pathog 9(10):e1003723

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health of US (NIH) (Grant No. R01AI075746), the National Natural Science Foundation of China (Grant Nos. 81171900, 81101279, and 81301458), the National S&T Major Program (Grant Nos. 2012ZX10004-219 and 2012ZX10004-220), Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113234120007), and Natural Science Foundation of Jiangsu Province (Grant No. 81101279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changliang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Z., Lv, Y., Wang, W. et al. MiR-278-3p regulates pyrethroid resistance in Culex pipiens pallens . Parasitol Res 114, 699–706 (2015). https://doi.org/10.1007/s00436-014-4236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4236-7

Keywords

Navigation